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Abstract

The vibroacoustic behavior of composite multilayered plates involving high Young’s
modulus ratios between adjacent layers, like sandwich panels and passive constrained
layer damped plates, is studied. As classical plate models give poor results with such
structures, a specific model has been used. It is an equivalent single layer model, with
a five unknown displacement field which takes into account a variation of transverse
shear strains into the thickness. A classical sandwich structure is simulated, its natural
frequencies are compared to those given by other models and a 3D finite element sim-
ulation which is taken as reference. A second study concerns a composite plate with a
damping patch in which the constraining layer is a unidirectional ply. Comparisons for
two orientations of this ply (0° or 90°) are presented.

1 INTRODUCTION

In plate structures, it is common to combine different materials with very different
Young’s moduli and densities. Two interesting applications are sandwich structures,
where the core materials (e.g., foam, honeycomb) usually have a low density and a
low stiffness compared to the skins, and passive damping patches where a thin layer
of high loss factor viscoelastic material is applied. In both cases, the Youngs modu-
lus ratio of two adjacent layers can reach 10°. Classical plate theories usually give
poor results with such a high Young’s modulus ratio; therefore, a more advanced plate
model is required. In this work, an anisotropic multilayer plate model with a particular
displacement field, originally developed by Sun & Whitney [1], is used; it defines the
displacement of all the layers of the panel as a function of the displacement of the
first layer using the assumptions of continuity of displacements and transverse shear
stresses at the interfaces between layers. The central role played by the base layer
makes the model perfectly adapted to the study of damping patches, which do not
classically cover the entire structure. In addition, the displacement field is particu-
larly adapted to highly inhomogeneous plates, which also includes classical sandwich
structures. Based on this plate theory, a discrete vibroacoustic model has been devel-
oped using the Rayleigh-Ritz method [2], in order to simulate the behavior of composite
plates damped with passive constrained layer patches. The model solves the complex



system of laminate equations of motion under harmonic excitation. It can manage
different loadings: concentrated forces, acoustic plane wave and diffuse field. It can
compute complex displacements, strains, and stresses in each layer. In addition, it
outputs the usual vibroacoustic indicators (e.g., mean square velocity, transmission
loss, radiated power) for the studied panels. Two studies are presented:

a — Computation of the natural frequencies is performed for an antisymmetric com-
posite sandwich structure [0°/90°/core/0°/90°] from the literature [3]. Results are
compared with those of classical plate models, three dimensionnal finite element
calculations and the literature.

b — A composite plate made of eight plies [0°/45°/90°/-45°]s covered over 40% of its
surface with a constrained layer damping patch is studied. The constraining layer
is made of a single unidirectional ply (two orientations are tested). Results are
presented in terms of mean quadratic velocity.

2 PRESENT PLATE MODEL

The present model has been presented in reference [2]. It permits to simulate the
behavior of a rectangular multilayered plate with one or several multilayered patches.
It is based on a displacement field obtained by means of kinematic and static consid-
erations. This approach was used in the early work of Sun & Whitney [1] for multi-
layered plates and has been used later for vibroacoustical purposes by Guyader and
Lesueur [4].

It is a two-dimensional plate model with the five classical displacement unknowns,
but it differs from classical laminate theories (CLT) and shear deformation theory (SDT)
since the assumed displacement variation, with respect to z, is piecewise linear. This
is the result of writing continuities of both displacements and shear stresses at each
interface, as shown below. For practical reasons, the displacement field of each layer
£ € [2..n] is linked to the displacement field of the first layer. Thicknesses and eleva-
tions for an n layer material are presented in figure 1. The displacement field in each
layer is written as follows,

{ ug(x,y,z) = ug(x,y, 2+ (2* = 2)(uza(x, ) — ¥es(x. ) (1)
ui(x,y,z) = u3(x.y)

where greek indices stand for in-plane quantities and take values 1 or 2, superscript £
stands for the ¢-th layer and superscript 1 stands for the first layer for which all will be
related, v4;(x, y) are the transverse (engineering) shear strains, and z* is the elevation
of the layer 4.

With these assumptions, the transverse displacement u; and the transverse shear
strains %, are constant within each layer with respect to the z-coordinate. There-
fore, transverse shear stresses will also be constant in each layer. According to these
remarks, the previously mentioned continuities of displacements and shear stresses
reduce to:

{ ut(x,y, 28+ ht/2) = u&i(x, y, 2% — htt1)2)
oas(x. ¥) = o5l (x.y)
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Figure 1: Geometrical parameters of the multilayer structure (represented on the left
side in an undeformed state) and displacements (represented on the right side after
deformation).

Equation (2) allows to link the displacement field in the (£ + 1)-th layer with the one
of the £-th layer, and, recursively, it can be linked to the displacement field of the first
layer, following a process detailed in reference [4].

For patched structures, the first layer is common to the uncovered and covered
parts of the plate, therefore all the displacements in the multilayered structure are
known in terms of the first layer’s displacement field, including only the five classical
plate unknowns: three displacements u! and two rotations ¢}, = v}, — v3s.

However, this plate model can be set into the refined shear theories family as it was
shown in reference [5]. The kinetic and static assumptions of equation (2) permit to
formulate four warping functions that can be used to define the displacement field in a
classical manner. Hence, the laminate static behavior involves 55 generalized stiffness
constants (a 10 x 10 and a 2 x 2 matrix) linking the 12 generalized displacements (3
membrane strains e,5, 3 bending curvatures k,p = —w g, 4 transverse shear strain
derivatives .5 = 7435, @and 2 shear strains -y,3) to the 12 corresponding generalized
forces(Nag, Mug, Pap and Qg ) :

N A B E] (e
M:=|B D F|(k; {Q}=[H]{v} (3)
P ET FT G| (T

Concerning the dynamic behavior, the kinetic energy involves 18 generalized mass
terms acting on the 7 generalized speeds (2 in-plane speed i,, 1 transverse speed w,
2 bending speeds —w, and 2 transverse shear speeds -y,3). The complete develop-
ment of the laminate motion equations can be found in the aforementioned reference.
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The construction of the discrete motion equation system is achieved by the Rayleigh-
Ritz method. Various boundary conditions and external solicitations can be consid-
ered, as it is presented in detail in reference [2]. In this reference, the vibracoustic
indicators computation from the outputs of the dynamic model is also detailed. How-
ever, this model uses at this time the enriched trigonometric basis described in [6]
instead of the trigonometric basis presented in reference [2], this last one has been
found to be unstable when order higher than 15 were used.

In addition, a post-processing toolbox that permits to compute the local complex
power in the laminate has been developed. It is presented in reference [7]. It has
been found to be a powerful tool to understand the damping behavior of such het-
erogeneous structures. These post-processing units permit to compute the incoming
complex power, the dissipated power and the conservative powers (kinetic and strain
contributions). These computations can be performed locally (i.e. for (x, y, z)), or for
a surface location (i.e. for (x, y), summation on z) that permits to plot maps, or for a
single layer to separate the different material contributions, or for the entire structure.
In addition, it is possible to separate the tensors components contributions to each
quantity. Ratios between some of these quantities are meaningful and can be used to
quantify and to optimize the damping.

3 ANTISYMMETRIC COMPOSITE SANDWICH STRUCTURE

This section aims at studying a five layer sandwich plate [0°/90°/core/0°/90°] with a
fixed ratio of thickness core to flange t./t = 10. The face sheets (Graphite-Epoxy
T300/934) have the following properties:
Ef = 131 GPa, Ef = 10.34 GPa, Ef = Ef, G;, = 6.895 GPa, G, = 6.205 GPa,
G5, = 6.895 GPa, v, = vf, = 0.22, Tuys = 0.49, p" = 1627 kg.m ™2,
The core material is made of an isotropic foam with the following properties:
E¢ = ES = ES = 6.89 x 1073 GPa, G5, = G5, = G§; = 3.45 x 1073 GPa, 1§, = v§; =
Vs, =0, p° = 97 kg.m~3

Six natural frequencies obtained with six different models are compared:

¢ the present model — 5 displacements variables,

e the classical Mindlin-Reissner plate model with shear correction factors set to
0.003186 (M-R SCF) — 5 displacements variables,

¢ the classical Mindlin-Reissner (M-R) plate model — 5 displacements variables,

¢ the 3D finite element formulation which is supposed to be exact —[(2x N+ 1) x 3]
displacements variables for N elements over the thickness,

e the layer wise (LW) model of Rao [8] — [(N + 1) x 6] displacements variables for
N layers,

¢ the equivalent single layer (ESL) model of Rao [8] — 12 displacements variables.



m n Presentmodel MR with SCF MR  HDST 3DFEM Rao (LW)[8] Rao (ESL)I[8]

a/H =10
1 1 1.8481 1.7438 13.8515 7.1342 1.8480 1.8480 4.9624
1 2 3.2232 27679 31.9890 12.1471 3.2204 3.2796 8.1934
1 3 5.2362 3.9208 55.8118 17.7164 5.2279 5.2234 11.9867
2 2 4.2904 3.5043 43.4895 15.6322 4.2011 4.2894 10.5172
2 3 6.0973 4.4709  62.3564 20.2753 6.0993 6.0942 13.7488
3 3 7.6712 5.2627  76.8282 24.0646 7.6849 7.6762 16.4514

a/H =100
11 11.6333 11.7177  16.2799  15.6790 11.9457 11.9401 15.5480
1 2 23.1617 23.1913 445302 41.9435 23.4031 23.4017 39.2652
1 3 36.0222 35,9085 95.0282  84.0773 36.1430 36.1434 73.4951
2 2 30.6842 30.7059  63.8371 59.3859 30.9430 30.9432 55.1512
2 3 41.2521 41.1568 108.2557  95.7435 41.4470 41.4475 84.2919
3 3 49.6040 49.4154 142.6021 123.4348 48.9995 49.7622 106.5897

Table 1: Variation of nondimensionalized fundamental frequencies w =
(wa?/h)+/pf | E for a composite sandwich panel with L /h varying and t./tr = 10

Table 1 shows that the present model is the most accurate of the equivalent single
layer models. Note that models in which displacements variables over the thickness
depends on the number of layers (or the number of elements) show a good accuracy
but those models are not as efficient in term of computation performance. It has been
shown in [5] that the present model shows a very good agreement when the Young’s
modulus ratio between the layers is quite high (over 10%).

Results obtained with the MR with SCF model and the present model are accept-
able for the second panel but still not as accurate as the LW model from Rao. This can
be explained since the present model is not the most appropriate for thin structures.

4 PATCHED COMPOSITE PLATE

This section aims at studying the mechanical and acoustical behavior of a composite
square plate [0°/45°/90°/-45°]s with a side length of L = 1 m and clamped bound-
ary conditions. Every ply is made of 0.15 mm of Graphite-Epoxy T300/934 (material
properties are given in section 3, damping factor of the composite is arbitrarily set to
n = 0.0016). The structure is excited by a plane wave traveling towards the plate with
incidence angles 0 = 45°, ¢ = 45°, and amplitude 1 Pa (see figure 2 for corresponding
definitions).
Three cases are studied:

e The naked plate without any damping patch,

e The plate covered on 40% of its surface with a damping patch made of 0.15 mm
of ISD112 and one 0.15 mm ply of Graphite-Epoxy T300/934 at 0°,

e The plate covered on 40% of its surface with a damping patch made of 0.15 mm
of ISD112 and one 0.15 mm ply of Graphite-Epoxy T300/934 at 90°.

The 1ISD112 properties are frequency dependent and detailed in table 2.



Figure 2: View of a patched plate submitted to an acoustic plane-wave, showing the
definition of the angles of incidence 6 and ¢.

Frequency (Hz) Young’s Modulus (Pa) Loss factor i

10 7.28 x 10° 0.90
100 2.34 x 10° 1.00
500 5.20 x 108 1.00
1000 7.28 x 10° 0.90
2000 9.88 x 10° 0.80
3000 1.17 x 107 0.75
4000 1.38 x 107 0.70

Table 2: Frequency dependence of the mechanical properties of the viscoelastic ma-
terial ISD 112 (T = 25°)

Figure 3(a) shows the plates’ mean square velocity up to 3 kHz. It is clear that
the patch has limiting effect on the mean square velocity over the plate. Note that the
orientation of the ply of the constraining layer has an influence.

The study is now focusing on two frequencies for which a typical behavior is ob-
served. The first frequency is 87 Hz, mean square velocity versus frequency is detailed
around that frequency on figure 3(a), we can see that the two patches have a different
efficiency at this frequency. Figure 4 shows the displacement and the mean square
velocity for both patched configurations. We can see on figure 4(a) that the 0° con-
straining layer ply let a 1 x 5 mode appear when on figure 4(b) this same mode is not
appearing and therefore mean square velocity is about ten times lower.

The second considered frequency is 2375 Hz. At this frequency, we can see on
figure 3(c) that the patche does not damp the structure very well. When looking at the
mean square velocity maps presented in figure 5 we can see that the patch does damp
where it is located, but mean square velocity all around the patch is quite high and
therefore we can say this patch layout is not appropriate for higher frequencies mode
shape. In order to evaluate the damping efficiency of the patches several energetic
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Figure 3: Mean Square Velocity versus frequency for the three studied structures. (a)
Mean square velocity over the 0 - 3000 Hz range. (b) First focus point : 87 Hz. (c) First

focus point : 2375 Hz.
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Figure 4: Mean square velocity, real and imaginary displacements for (a) the 0° con-
straining layer ply and (b) the 90° constraining layer ply.
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criteria, proposed in [7], could be used to improve the patches layout and avoid this
kind of behavior.

5 CONCLUSION

A Rayleigh-Ritz-based code which implements a specific anisotropic plate model has
been used to simulate the vibroacoustic behavior of structures having high Young’s
modulus ratios between adjacent layers. Such structures are common nowadays
in many industrial domains, including transports. Sandwich structures and patch-
damped plates are two examples of practical interest.

The particularity of the considered plate model is that, although it is an equivalent-
single-layer model with only a five-unknown displacement field, takes into account an
out-of plane variation of the transverse shear strains by means of kinematic and static
assumptions. The model assumes the transverse shear stresses as constant over z
and hence, is not suitable for the study of homogeneous plates without the help of
shear correction factors (for the single layer case, the present model is equivalent to
the Mindlin-Reissner model). On the contrary, this model is particularly efficient when
multilayered plates with high Young’s modulus ratio between layers are simulated. It
has been shown in previous papers [7, 5] that results very close to those of 3D finite
element simulations can be computed with a much lower computational cost.

In this paper, additional results involving composite structures have been com-
puted. A classical sandwich structure is simulated in terms of natural frequencies and
the results are compared to other models, taken from literature or computed for the
occasion, and to a 3D finite element simulation which is taken as reference. Another
study concerns a passive constrained layer damped plate. To illustrate the behavior of
the model, the considered constrained layer has been taken as a single unidirectional
composite ply with orientation set to 0° or 90°. Comparisons of these two configura-
tions are presented in terms of mean square velocity and also in terms of deformed
shapes for some particular frequencies.
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