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ABSTRACT

To account for structural damping, modal frequency response simulations typically define damping
as the imaginary part of the stiffness matrix projected onto the modal basis. Three main damping
distribution formulations are available in commercial codes. Each has damping definition limitations
either in terms of frequency dependence or spatial uniformity, or accuracy limitations when looking
at hyper-localized damping or subsystems with low modal densities. This paper presents an adapted
damping distribution formulation implementation based on modal strain energy distribution between
subsystems which lifts the restrictions present in the currently available formulations. First, a review
of the existing damping distribution formulations is presented, detailing the limits of each one. Then
the strain energy-based modal damping distribution is introduced and finally, a validation study on a
generic payload is performed, illustrating the advantages of this new formulation.

1. Introduction

When predicting the structural response of a test article in a dynamic environment, damping is often
a variable of adjustment with flexibility and multiple possible definitions. In this context, damping
represents the dissipation of energy intrinsic to the vibrating structure.

While damping is a generic term representing the intrinsic energy dissipation of a vibrating structure,
it materializes through several phenomena: mainly, rubbing between two components or energy
dissipation intrinsic to the material being deformed. The topic has been extensively studied, leading
to many different damping models available in the literature. For example, one can opt to use either
structural or viscous damping, uniform throughout the structure or non-uniform, or even frequency-
dependent or not. However, we must note that, often, the abilities of the available damping models
surpass the available information. Commonly, in industrial models, generic damping schedules are
employed. This often ignores specificities of the physical model, sometimes even simplifying the
formulation to the point of defining a single damping value, constant for the whole model and the
whole frequency range. While this can be an option if conservative predictions are desired, it is
certainly not the most accurate representation of the actual structure.

For industrial models, structural damping is commonly employed as it can easily be characterized
and is defined as the imaginary part of the stiffness matrix, allowing for both non-uniform and
frequency-dependent damping. However, we must note once again that, even though the employed
model offers a lot of freedom to define damping, the corresponding necessary information may not
be available at the time of solving.

Specifically, in the case of the modal frequency response, the damping information, potentially
spatially non-uniform and frequency dependent, must be projected on a modal basis. Although simple
in appearance, this last part often requires a dedicated methodology as the nodal stiffness matrix is
often not available when damping projections on the modal basis are performed. Multiple methods
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have been proposed and studied in the literature [1] [2] [3] [4] [5].

This paper gives a review of the available structural damping projection models currently available
in the VAOne software and details a proposed implementation of the strain energy damping
distribution model. Finally, an example structure submitted to a random diffuse acoustic field is
studied where the effect of the different damping models are compared to one another.

2. Available damping projection models

Typically, modal frequency response solutions have limited damping modeling options. As damping
must be expressed on a modal basis, the two simplest ways of accounting for damping in a simulation
model are:

. to assume the damping uniform throughout the model,

. to project from the stiffness matrix as the normal mode analysis as performed by the finite
element solver.

However, one may also choose a modal quantity of reference and project damping values at every
frequency the modal is solved. This strategy is developed below.

2.1. Overview of the modal frequency response

Fundamentally, the dynamic behavior of a structural system is described by a frequency-dependent
dynamic stiffness matrix D(w) linking the displacement response vector u to the force vector f:

D(w)u=f 1)
The formulation can be adapted for random vibration with the following:
D(w)HSuuD(U)) N Sff (2)

where S, and S represent the cross-spectral response and the cross-spectral loading respectively.
For notation simplicity, the following will use the deterministic notation.
The real part of the dynamic stiffness matrix is built with the static stiffness matrix K and mass matrix
M for a given angular frequency w:

D(w) = K- w?M (3)

The modal frequency response projects each quantity from the nodal basis to the modal basis through
the vector of the mode shapes P.

K, = PTKP
— pT

M, =P MP (4)
— pT

f, =P'f

The dynamic stiffness matrix becomes:
[Kq_szq]quq (%)

with the response at any point u(x) is expressed as

u(@®) = ) P, ©)
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Using both the orthogonality of the mode shapes and modes normalized to a unit of the generalized
mass, we can write:

[0f - w?lq = f; ™

with w; "is the i—th natural frequency" of the structure.

Overall, this means that the modal frequency response, when performed outside of the finite element
solver is performed with only the natural frequencies w; and the corresponding mode shapes vector
P. In this, the structural damping is still expressed at the imaginary part of the stiffness matrix. Let
D;,ss represent the imaginary part of the dynamic stiffness matrix, the introduction of the loss matrix
becomes

[wiz + iDjyss — wz]q = fi (8)

D;,ss Will then vary for each damping projection model. From now on, this paper will focus on the
different projection models used to describe D;, .

2.2. Spatially uniform damping

Although the simplest, a spatially-uniform damping model is also the most commonly used. In this
formulation, the modal damping is set to be directly proportional to the modal stiffness matrix.
Dyoss (@) = n(w) Kmoaar

9
Djoss(w) = n(w) (‘)iz ©)

This formulation does allow for frequency dependence and is accommodating well the damping
schedules mentioned in the introduction.

2.3.  Imported modal damping

Similarly to the operations performed in equation (4), most finite element solvers also project the
imaginary part of the nodal stiffness matrix to the modal stiffness matrix. Therefore, we have:

Dipss = P Im(K) P’ (10)

The advantage here is the ability to define spatially non-uniform damping, however, in this case, K
is not frequency dependent, and there D, is not frequency dependent.

2.4. Kinetic energy proportional damping

To accommaodate both frequency-dependent and spatially non-uniform damping, the modal damping
projection has to be performed at every frequency during the solving process with a quantity of
reference. The quantity should vary for every mode and spatially. Initial implementations in VA One
used the kinetic energy for this process, in which case D;,s; becomes

Dioss (w) = [iﬂs ((‘))wrzl,s] (1)
_ YFE Subs,m nm((‘))P;rmmPs
(w) B 2FE Subs,m P;rmmps

with 7,

for mode s and subsystem m. The validity of this assumption relies on the fact that it is expected for
the kinetic energy to be proportional to the strain energy. Validation studies have shown that this
assumption is valid when subsystems have a large number of modes. However, it typically finds its
limitation when damping is hyper-localized on a model and greater care must be taken when
projecting damping on a modal basis.

33rd Aerospace Testing Seminar, May 2023



Effectively, this method determines unique values of modal damping for each frequency at which we
are solving. This allows for frequency-dependent damping.

2.5. Strain enerqy proportional damping

To project spatially non-uniform and frequency-dependent damping onto the modal basis with the
same accuracy as in equation (10), a newly implemented method distributing the damping
proportionally to the modal strain energy is proposed. The method can then evaluate frequency-
dependent modal damping distributed similarly to the projection done by the finite element solver.
With this, the diagonal terms of D, are equal to those obtained by the finite element solver for a
given frequency. The proposed formulation is then written as

Dloss(w) = [ins(w)w%,s]
with 7n4(w)
_ ZFE Subs,m nm(w)Eg,m

€
ZFE Subs,m VEs,m

(12)

and VE; ., is the total strain energy of modes and subsystem.

The challenge of the implementation of this method is to make available the strain energy proportion
for each mode available into a separate solver outside of the finite element solver without exporting
the whole stiffness matrix which can be cumbersome.

For this, some finite element solvers, such as ESI’s Virtual Performance Solution, can output the
proportion of modal strain energy for each PID and each mode. This proportion can be expressed as
a percentage of the modal strain energy, pge,, defined as

= Esm (13)
PESm = ZFE Subs,m VE;m
Then equation (12) becomes
Dloss(w) = [ins(w)wrzz,s]
with ng(w) (14)
= Z Tlm(w)PEgm
PID,m

As mentioned above, pgz, is directly available in the log file as shown in Figure 1 which makes the
implementation and prototyping of this damping projection model implementation simple.
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#* INFQ **% ETGEN MCODE HO. 10

TEANSLATICNAL SCARLING FACTOR = 1.4134E-01

SOLUTICH AT EIGEN MODE HO. 10
e s s e s e ok s ok e ok o s ok ko ok s ok o ok
EIGEN FREQUENCY............vu. 1.4837E+01
INTERWAL ENERGY......ucuevanann 4 03
EXTERNAL WORE........c.cuevanann
TOTAL ENERGY. .. .. cvernnenanans
SOLID HOURGLASS ENERGY.........
SHELL HCOURGLASS ENERGY.........
B CONTACT SPRING WORE............
681 CONTACT FRICTICN ENERGY........
682 CONTACT DAMPING ENERGY.........

684 INTEENAL HOURGLASS TOTAL
685 PART ID* ENERGY ENERGY ENERGY

24.69 % 0.00 % 24.69 %
7 1 12.11 % L 12.11 %
2 63.20 % % £3.20 %

TOTAL 4.35E+03 O.0CE+00 4.35E+03

Figure 1 - Strain energy per part ID in a finite element solver log file. The strain energy here is
referred at internal energy.

Similarly to the kinetic energy proportional damping, this method effectively calculates unique values
of modal damping for each frequency we are solving. It is worth noting that, for the same values of
damping at a given frequency, the modal damping calculated with this method is identical to the
imported modal damping method discussed in 2.3.

3. Example payload and damping model comparison

3.1. Reference model and input data

So to compare the different damping projection models presented in section 2, a generic satellite
structure submitted to a diffuse acoustic field modeled with the boundary element method. This type
of model is an industry standard and has been presented and reviewed extensively [6] [7] [8]. While
being a fully coupled model, the response of the structure has the form of a modal frequency response,
and therefore, damping must be defined on a modal basis.

In this model, each part ID is assumed to have a well-characterized material damping as a function
of the frequency.
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Figure 2 - Studied satellite structure

The damping spectrum of each material construction is described in Figure 3 and the corresponding
location on the structure is shown in Figure 4.

Damping loss factor spectra

10.0 1080 1000.0
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" \

Frequency (Hz)

Structural Damping Loss Factor (%)

Sandwich Flexure

Metallic Parts

Tuned Damper

Composite panel Average Uniform Damping

Figure 3 - Characterized damping loss factor spectra for each construction
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Figure 4 - Construction description of the representative structure

Figure 3 also shows the average damping spectrum used for the spatially uniform damping model
described in 2.2. For the imported modal damping, the finite element solver is using a single constant
value per part ID over the frequency range. Typically, an average value over a given frequency range
is used. For this study, the values in Table 1 are used for this model.

Table 1 - Frequency average values for each part for the imported damping model

Sandwich | Metallic | Tuned | Composite
Flexure Parts | Damper panel

Average
damping
valueup | 3.80% 1.25% | 12.14% 1.89%
to
200Hz

Figure 4 also shows 6 key data recovery locations (named Reflector — 1, Reflector — 2, Sandwich —
1, Sandwich — 2, Solar Array — 1, Solar Array — 2) where the structural response is recovered and
used for comparison.

3.2. Single frequency point implementation verification

To validate the implementation of the projection algorithm we can set a special version of the
imported modal damping such that the damping set on the finite element model match the damping
values from the spectra defined in Figure 3 at a given frequency. We then expect that the
corresponding imported modal damping matches exactly the strain-energy damping. For this
verification, we are choosing the 127.43 Hz frequency for this exercise as we know the response of
the solar array is very different from the strain-energy proportional damping model, and therefore
different from the other methods. Table 3 shows a summary of the calculated modal damping at
127.43 Hz, with the first three modes and the last mode. The green section of the table are showing
the minima et maxima of the corresponding columns as well as the RMS values of those columns.
We can see that the calculated modal damping is similar for both methods (the RMS of the damping
value difference between both methods is under 2%). Minor differences are attributed to the number
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of digits present in the log file (see Figure 8) for the strain energy distribution as well as an
interpolation function used for the damping loss factors in the code.

Table 2 - Damping values at 127.43 Hz from Figure 3

Sandwich | Metallic | Tuned | Composite
Hz

Flexure Parts | Damper panel
Damping
value at
197 43 3.51% 1.69% | 11.82% 1.52%
Hz

Table 3 - Modal damping comparison at 127.43 Hz

Modal .
Damping from Modal damping
p. g. from Finite Difference
Projection
. Element Solver
algorithm
Maximum 0.0876 0.0972 3.49%
Mode # |Minimum 0.0155 0.0151 -10.99%
RMS 0.0200 0.0202 1.81%
0.0168 0.0167 0.84%
0.0168 0.0166 0.84%
3 0.0168 0.0167 0.83%
3244 0.0162 0.0161 0.89%

3.3. Results comparison

Figure 5 shows responses at location “Sandwich 1” for all 4 damping projection models. We first
notice all 4 response curves are fairly similar in terms of trend. Differences between curves are
localized to given frequencies where either a given mode is active or a frequency spectrum has a
higher value of damping.

Out of all four methods, the Strain Energy Proportional damping gives results that differ the most
from the other three methods. This is because the strain energy method allows for an accurate
projection of the local damping values on a modal basis while allowing for frequency-dependent
damping. This model illustrates this well as the damping here is both very localized and frequency
dependent.

We also observe that as the frequency increases, responses from all four methods are closer to each
other. This observation is particularly true when comparing the kinetic energy proportional damping
and the strain energy proportional damping, as it is assumed that both methods trend to similar results
as the frequency and modal density increase.
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Figure 5 - Sandwich 1 location structural response comparison for the four damping distribution
models

These observations can be reproduced on other sensor locations in Figure 6. While Figure 7
reproduces some of these observations, the results convergence between the strain energy and kinetic
energy proportional damping project models is less obvious and may need to be investigated in the
future.
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Figure 6 - Reflector 1 location structural response comparison for the four damping distribution
models
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Sensor Response-Solar Array - 2
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Figure 7 - Solar Array 2 location structural response comparison for the four damping distribution
models

Figure 5 shows the clearest differences between the proposed projection models. At about 47Hz, the
response difference is very clear. When observing the structural mode shapes at this frequency, we
can see that the solar array of the studied structure is particularly active. Additionally, the solar array
is connected to the main bus through a truss where the tune damper damping loss factor is connected.

Figure 8 confirms this observation showing a concentration of the modal strain energy on the
composite panels at this 47 Hz frequency.

Figure 7 shows a much higher response of the composite panels at higher frequencies. This is
expected as this panel isn’t stiffened and has very localized low damping at (1.10%).
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SOLUTICH AT EIGEN MODE HOC. 208
e e iy i iy e e e e e e e e e e e iy iy e

EIGEN FREQUENCY........000uunnn 4.8933E+01
INTERMAL ENERGY........000uuuns 4.7037E+04
EXTEENAL WORE......... v nnnnn 0.0000E+00
TOTAL ENERGY...... o0 nninnnnnns 4.7037E+04

S0LID HOURGLASS EMNERGY......... 0.0000
SHELL HOURGLASS EWNERGY......... J.0000
COWNTACT SPRING WORE............ J.0000
COWNTACT FRICTICH EWNERGY........ J.0000
COWNTACT DAMPING EMERGY......... J.0000

i I I e I I I I |
|

ENERGIES PER PARTS
PART ID TINTERNWAL HOURGLASS INTERNAL

TCOTAL
100000 .94 % .00 % .59 %
10000 0.00 % .00 % .00 %
1000049 S96.94 % .00 % 96.94 %
100011 2.12 % .00 % 2.12 %
TOTAL 4.70E+04 0.00E+00 4.70E+04

Figure 8 - Strain energy distribution for mode 208. Here 96.9% of the strain energy is on the
compositive panels (PID 100009).

4. Conclusions

Generally, all four damping models give similar results. Some differences are observed when large
differences in damping values between the subsystems are used at a given frequency. One may choose
to attribute differences between the different models to modeling uncertainties. However, given the
nature of each model, we can determine which is the most accurate.

The summary review of the different damping projection models is presented in Table 4.
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Table 4 Damping model review table

Spatially | Imported Kinetic Strain
uniform | modal energy energy
damping | damping | proportional | proportional
damping damping
Damping Yes No Yes Yes
can be
frequency
dependent
Damping No Yes Yes Yes
can vary
spatially
Assumption No No No No
on damping
projection
model

Though all four models give similar trends, the strain energy proportional damping is a formulation
without compromise. This model is the most accurate as it does not make any compromise between
accuracy and flexibility. Its current implementation uses strain energy distribution per part as output
by the finite element solver.

As this quantity may not be standard on all finite element solvers, at the time of writing this paper,
alternate implementation options of the strain energy proportional damping are being considered such
that limited outputs from the finite element solver would be necessary for this formulation.
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