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Depuis plusieurs siécles, les conceptions humaines sont de moins en moins le fruit d’'un
savoir faire empirique mais sont issues du résultat de calculs eux-mémes basés sur les
lois du monde physique. La compréhension des lois qui régissent le monde qui nous
entoure est donc essentielle a I'évolution de notre savoir faire. La modélisation des struc-
tures est un point essentiel a toute conception et cette affirmation est d’autant plus valable
que la technologie mise en ceuvre est complexe. Le domaine des transports est un bon
exemple des évolutions en matiére de conception. En effet, les exigences des consom-
mateurs sur les véhicules en matiere de performances, de sécurité et de confort ayant
évoluées, la conception d’'un moyen de transport repose aujourd’hui majoritairement sur
des simulations effectuées par des ordinateurs, impliquant souvent un processus d’opti-
misation.

Lévolution des capacités de calcul des ordinateurs n’est pas non plus étrangére a cette
tendance. Depuis maintenant plus d’'un demi siecle, la méthode des éléments finis, as-
sociée aux lois de I'élasticité tridimensionnelle, permet d’effectuer des simulations du
comportement mécanique de structures complexes soumises a des chargements divers.
Cependant, les capacités de calcul des ordinateurs actuels ne permettent toujours pas
d’effectuer des simulations qui utiliseraient des éléments finis tridimensionnels, pour une
structure complexe comme celle d’une voiture ou d’'un avion, car cela créerait des sys-
temes d’équations de taille trop élevée. Cette limitation est encore plus marquée lorsque
la finalité des simulations est d’effectuer un travail d’optimisation ; ces procédés requierent
le plus souvent plusieurs itérations et donc de nombreux calculs.

Par ailleurs, les procédés de conception, méme les plus pointus, ne permettent pas a ce
jour d’optimiser complétement toutes les structures. Ainsi, dans le domaine aérospatial,
il est reconnu qu’environ 40% de la masse d’un satellite résulte du sur-dimensionnement
qui lui permet de résister aux conditions vibratoires intenses dans lequel il se trouve lors
de son lancement [henderson_vibro-acoustic_2003 ]. Etant donné les enjeux liés a la
masse d’un satellite, cet exemple seul justifie 'importance de la recherche de nouveaux
procédés d’amortissement ainsi que le développement des simulations et des méthodes
d’optimisation pour les dispositifs actuels.

De maniére générale, la maitrise de I'amortissement est un point important lors de la
conception de nombreuses structures. Afin de palier aux problémes vibratoires de cer-



taines structures faiblement amorties, I'utilisation de patchs PCLD ' (Passive Constrai-
ned Layer Damping — viscocontraints) est courante depuis leur introduction par Swal-
low [Swallow1939 ] en 1939. De nos jours, cette technologie est une solution simple et
économique pour réduire I'amplitude des vibrations et indirectement, le bruit rayonné par
une structure. Pendant des années, ces patchs furent quasiment exclusivement réservés
a l'industrie aéronautique ; toutefois Rao [Ra02003 ] a fait état de leur apparition dans le
domaine de 'automobile.

D’autre part, les comportements d’'une structure peuvent étre complexes et difficiles a
simuler au travers de méthodes réputées exactes. Il est donc nécessaire d’établir des
modéles permettant d’approcher le comportement de la structure physique en faisant
des hypothéses simplificatrices a plusieurs niveaux :

— Le comportement dynamique du matériau : le comportement d’'un matériau soumis a
un chargement donné n’est pas systématiquement linéaire. La complexité du phéno-
meéne est encore plus grande lorsque le phénomene d’amortissement des matériaux
est pris en compte. Afin de modéliser le comportement des matériaux, plusieurs mo-
déles rhéologiques ont été proposés dans le but de simuler différents effets tels que
I'elasticité, la viscoelasticité et la plasticité.

— Le comportement de la structure : afin de limiter la taille des systemes a résoudre, des
hypothéses simplificatrices peuvent étre établies sur le comportement de la structure.
Les modeles de plaque ou I'on choisit de poser des hypothéses sur les contraintes et
les déformations dans I'épaisseur de la structure sont une trés bonne illustration de cet
aspect. Le plus souvent, le comportement de la plaque est basé sur des hypothéses
de répartition des contraintes dans I'épaisseur de la plaque par rapport a un plan de
référence ou sont estimées les variables du champ de déplacements.

— La méthode de discrétisation : I'estimation de la réponse statique ou dynamique d’une
structure soumise a un chargement donné ne peut que trés rarement étre obtenue
a l'aide d’'une solution analytique. Il est alors nécessaire d'utiliser une technique per-
mettant d’évaluer le comportement d’une structure ayant une géométrie quelconque.
On utilise alors une méthode de discrétisation, c’est a dire que les champs sont pro-
jetés sur des bases finies de fonctions choisies a priori, cela amenant a ne manipuler
gu’un nombre fini de variables. Ces variables peuvent avoir un caractéere local (comme
pour la méthode des différences finies ou encore des éléments finis) ou non (comme
pour la méthode de Rayleigh-Ritz). La suite du calcul peut se faire de deux fagons
plus ou moins équivalentes : dans certains cas, I'existence d’un principe des travaux
(ou puissances) virtuels améne a formuler le probleme comme la recherche d’un mini-
mum d’énergie et dans d’autres cas, on recherchera le minimum d’un résidu dans une
équation.

Ce document tente de répondre aux besoins de modélisation de structures incorporant

1. Afin de se conformer avec les termes communément admis dans la littérature, et donc le plus souvent
en langue anglaise, ce document mentionne en priorité les acronymes couramment utilisés, puis en italique
le terme anglophone approprié suivi de la traduction en frangais.



des éléments amortissants, afin de permettre une meilleure optimisation de ces traite-
ments et donc d’améliorer le confort vibratoire et acoustique des véhicules.

Nous proposons ici un modéle permettant de décrire le comportement de plaques compo-
sites munies de patchs PCLD. C’est un modele générique utilisant des jeux de fonctions
de description du cisaillement transverse. Le choix de ces jeux de fonctions permet de
retrouver divers modeéles de plaques issus de la littérature. D’autres propositions de jeux
de fonctions sont faites afin de répondre aux problémes de modélisation posés ci-dessus.
Dans un second temps, nous présentons trois méthodes de discrétisation adaptées au
modéle proposé : la méthode de Rayleigh-Ritz, la méthode de Navier et la méthode des
éléments finis. Finalement, nous proposons plusieurs applications : tout d’abord, afin de
valider le modeéle, nous le confrontons a des solutions analytiques et des résultats issus
de calculs éléments finis tridimensionnels, puis, nous décrivons une étude de la répar-
tition de I'énergie vibratoire complexe d’une plaque patchée, enfin nous proposons une
méthode d’identification a partir du modéle présenté.



Le vaste probléeme de la modélisation des plaques est étudié depuis de nombreuses
années afin de pouvoir répondre aux problemes liés a la modélisation des structures,
des impacts, du comportement acoustique ou des vibrations. Parmi les premiers tra-
vaux sur les théories des plaques, nous pouvons notamment citer ceux de Kirch-
hoff [kirchhoff_uber_1850 ] en 1850 et de Love [Love1888 ] en 1888 qui établissent un
premier modéle de plaque sans prise en compte du cisaillement transverse ; ces travaux
font encore a ce jour référence dans la littérature. Ces approches simples permettent
d’obtenir des résultats, le plus souvent satisfaisants pour les structures fortement élan-
cées (ces modeles sont encore appelés "modeéles de plagues minces") puisque pour
celles-ci, 'importance relative des contraintes de cisaillement transverse reste modérée.

Toutefois, les théories classiques ne permettent pas d’atteindre une précision satisfai-

sante dans trois cas :

— Lorsque I'élancement de la plaque est faible, les contraintes de cisaillement transverse
ne peuvent plus étre négligées vis a vis des autres composantes, il est alors recom-
mandé d’utiliser un modeéle adapté aux "plaques épaisses”.

— Dans le cas d’'une étude dynamique, au voisinage d’'un mode d’ordre élevé, le rap-
port entre la longueur d’'onde de flexion et I'épaisseur de la plaque peut se réduire
suffisamment pour que le mode de déformation s’apparente a la flexion d’une plaque
épaisse.

— Lorsqu’il y a un fort ratio de module de Young entre les couches de la plaque, la va-
riation des déformations de cisaillement au travers de la plaque est trés importante et
doit étre prise en compte. On retrouve cette situation dans le cas de I'application d’un
dispositif amortissant passif qui comporte un matériau viscoélastique a faible module
de Young.

A ce jour, I'enjeu principal est de modéliser le comportement d’assemblages multi-
couches complexes, composés de plagues composites anisotropes, ainsi que des dispo-
sitifs amortissants passifs, impliquant des matériaux viscoélastiques a faible module de



Young ou encore des patchs piézoélectriques utilisés dans le contr6le actif. Par ailleurs,
le dimensionnement de ces traitements amortissants, qui fut empirique dans un premier
temps, implique de nos jours des besoins de simulation de ces systémes afin de maximi-
ser leur efficacité.

La simulation du comportement des structures traitées nécessite I'utilisation de modéles
adaptés, permettant de prendre en compte les caractéristiques éventuellement aniso-
tropes des matériaux, tout en tenant compte des effets induits par les dispositifs amortis-
sants. La présence de ces derniers sur une structure rend la modélisation du comporte-
ment statique et dynamique de celle-ci bien plus complexe. En effet, I'ajout de couches
de matériaux viscoélastiques a faible module de Young ou piézoélectriques, implique le
plus souvent une perturbation des champs cinématiques due a une variation importante
du cisaillement transverse au travers de I'épaisseur de la plaque. Or, la plupart des mo-
déles de plaques classiques posent pour hypothése la constance des déformations de
cisaillement transverse dans I'épaisseur de la plaque. Il est donc nécessaire de dévelop-
per des modeles appropriés permettant de modéliser correctement les structures munies
de traitements amortissants.

DES

Dans le domaine des transports, I'adjonction sur des plaques de dispositifs d’amortis-
sement des vibrations passifs, semi-actifs ou actifs est une pratique courante depuis de
plusieurs années. En effet, le niveau de confort des véhicules tendant a s’améliorer, les
attentes des passagers évoluant, les problématiques acoustiques et vibratoires sont de-
venues primordiales. Le contrble des nuisances sonores repose en partie sur la limitation
des vibrations des structures qui peuvent étre a I'origine du son.

C’est ainsi que I'utilisation de dispositifs d’amortissement passifs sur des plaques est
devenue courante dans les véhicules terrestres et aériens ; c’est un moyen simple et éco-
nomique pour améliorer le confort vibratoire et acoustique des véhicules. D’autre part, ils
ont pour avantage d’étre relativement peu encombrants et lIégers lorsqu’on les compare
aux dispositifs d’isolation sonore usuels que sont les isolants acoustiques classiques (gé-
néralement constitués matériaux a densité élevée).

Les dispositifs actifs quand a eux, bien que tres efficaces, sont plus chers et plus com-
plexes a mettre en ceuvre. lls sont donc réservés a des utilisations spécifiques, notam-
ment a la stabilisation de certains instruments dans les satellites ou d’autres applications
militaires.

Cette section présente les principales technologies passives et actives d’amortissement
des vibrations des plaques.



Ladjonction de traitement passifs a une structure vibrante est un moyen classique de
réduire 'amplitude des vibrations de celle-ci. Les traitements sous forme de patchs per-
mettent d’étre ajoutés a la structure sans avoir a reconcevoir la piece concernée. Parmi
les patchs passifs, on distingue deux types de technologies :

— Les patchs FLD, (Free-Layer-Damping — viscoélastiques non contraints), sont géné-
ralement composés d'une seule couche de matériau polymére qui se déforme en
extension-compression lorsque la plaque fléchit. Ce type de traitement est utilisé dans
I'automobile lorsque I'on rajoute une couche de "mastic" aux planchers ou autres par-
ties de la carrosserie. Lefficacité de ces traitements est principalement liée a I'épais-
seur de la couche de matériau viscoélastique appliquée et est donc souvent limitée du
fait des restrictions de poids.

— Les patchs PCLD, (Passive-Constrained-Layer-Damping — viscoélastiques contraints),
sont composés d’une fine couche de matériau viscoélastique fortement amortissant
(et a faible module de Young) recouverte d’'une couche d’un matériau plus rigide, le
plus souvent métallique. Lorsque la structure de base fléchit, le matériau viscoélas-
tique est contraint de se déformer en cisaillement grace a la couche supérieure rigide.
D’un point de vue historique, les patchs PCLD sont mentionnés pour la premiére fois
en 1939 dans un brevet britanique [Swallow1939 ] qui décrit un systeme de patchs
viscoélastiques contraints, collés, qui est dédié a I'amortissement des vibrations de
panneaux de porte d’avion. A ce jour, cette méthode fait partie des traitements amor-
tissants classiques utilisés dans l'industrie. lls se présentent, le plus souvent, sous la
forme de patchs autocollants a répartir sur toute ou partie de la structure. La techno-
logie PCLD est généralement plus efficace que la FLD car d’avantage d’énergie est
dissipée en chaleur dans le travail effectué par la déformation de cisaillement dans la
couche viscoélastique. Par ailleurs, les couches étant plus fines que pour les patchs
FLD, elle représente un gain de poids certain par rapport a la FLD, et est donc plus
recommandée pour des utilisations aéronautiques.

La figure 1.1 présente ces deux types de patchs ainsi que leurs états déformés. La fi-
gure 1.2 illustre des applications de patchs viscocontraints dans une automobile. Nous
remarquons que dans ce cas, et dans un souci d’efficacité, les panneaux sont entie-
rement recouverts de traitement amortissant. Cependant, nous pouvons supposer qu'’il
est possible de trouver un compromis poids efficacité au travers de calculs d’optimisa-
tion. Ceci est essentiel pour les applications aéronautiques ou la réduction de la masse
demeure un enjeu majeur.
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FIGURE 1.1 — (a) Patch viscoélastique non contraint dans son état non déformé en haut
et déformé en bas - (b) Patch viscoélastique contraint dans son état non déformé en haut
et déformé en bas.

FIGURE 1.2 — Exemple d’utilisation de patchs viscoelastiques.
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FIGURE 1.3 — Structure patchée avec une couche d’espacement entre le patch et la
plaque.

Une partie des traitements passifs utilisés dans les avions commerciaux se limite a ap-
pliquer localement des traitements dans le fuselage, afin de réduire 'amplitude des vi-
brations. En raison des restrictions de poids, les traitements sont concus pour maximiser
'amortissement en limitant la masse ajoutée. Les traitements viscocontraints classiques
fonctionnent en cisaillant le matériau viscoélastique. Cependant, dans les modes de dé-
formation les plus bas, lorsque la courbure est faible, le matériau viscoélastique peut ne
pas étre suffisamment cisaillé pour étre pleinement efficace. Pour surmonter ce phéno-
meéne, I'adjonction d’'une couche d’espacement, entre le patch et la plaque sur laquelle il
est appliqué, est une solution possible a ce probleme, comme illustré dans la figure 1.3.
Le matériau de cette couche d’espacement est censé, idéalement, avoir une rigidité de
cisaillement infinie et une rigidité de flexion nulle. La couche d’espacement permet d’aug-
menter la distance entre I'axe neutre de la structure de base et le systéme d’amortisse-
ment. Selon Rao [Rao02003 ], cette couche agit donc comme un amplificateur cinéma-
tique afin d’augmenter de maniére significative les déformations de cisaillement dans la
couche viscoélastique et donc I'efficacité du traitement.

Aussi appelés Tuned Viscoelastic Dampers (TVD — amortisseurs harmoniques) ces dis-
positifs, présentés dans la figure 1.4, sont spécialement congus pour amortir les vibra-
tions a une fréquence donnée ou dans une bande de fréquence. Le systéeme se résume
alors a un systeme masse ressort amorti dont les caractéristiques ont été choisies afin
de cibler une ou plusieurs bandes de fréquences prédéterminées. Ce genre de systeme
est particulierement efficace lorsqu’il est placé dans une zone ou les amplitudes des
déplacements sont grandes pour la fréquence ciblée. Un autre point déterminant est la
température de fonctionnement du systeme, en effet, les TVD ne doivent pas opérer au-
tour de la température de transition vitreuse du matériau viscoélastique car les dispositifs
réalisés pourraient se révéler difficiles a dimensionner (les propriétés des polymeres vis-
coélastiques variant fortement avec la température). Harrison [harrison_tuned_1994 |
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FIGURE 1.4 — Amortisseur viscoélastique accordé.

propose une étude d’'un systéme TVD sur une plaque afin d’optimiser le comportement
du patch en flexion. Pour cette étude, la nature du probléme est donc différente puisque
I'étude du systéme en flexion implque que I'on ne considére plus un systéme masse-
ressort comme pour les amortisseurs viscoélastiques accordés classiques.

De récentes applications impliquant des traitements amortissants montrent une tendance
a incorporer les traitements a l'intérieur des structures vibrantes. Ces nouvelles mé-
thodes, dont quelques exemples sont présentés par Rao [Ra02003 ], reviennent le plus
souvent a choisir une "colle intelligente" de fagon a réduire les amplitudes des vibrations
de la structure. La figure 1.5 présente quelques exemples d’incorporation de matériaux
viscoélastiques dans une structure aéronautique : l'interface entre les raidisseurs et la
peau est réalisée par une couche de matériau viscoélastique. On peut aussi mention-
ner I'existence de pare-brises en "verre laminé" comme un exemple de cette tendance.
Le pare brise peut étre alors considéré comme une plague sandwich amortissante dont
I'ame est constituée de polyvinyl butyral et les peaux, de verre.

Dans ce domaine, Kerwin [edward_m._kerwin_damping_1959 ] fut parmi les premiers
a proposer une étude d’'une poutre patchée, pour laquelle il etablit le facteur de perte
structurel, a partir des travaux d’Oberst. Kosmatka [kosmatka_passive_1995 ] propose
une étude sur un composite muni d’'un patch viscocontraint. D’autres études expérimen-
tales ont été proposées sur des structures différentes d’'une poutre ou plaque comme
celle de Kumar et Singh [kumar_experimental_2010 ] qui proposent une étude sur un
panneau courbe. De maniére générale, de nombreuses études expérimentales ont été
réalisées sur les patchs viscocontraints. Cependant peu de travaux sont focalisés sur
'aspect purement expérimental de I'étude. Le plus souvent, ces études expérimentales
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FIGURE 1.5 — Exemples de traitements amortissants intégrés a l'intérieur de la structure
d’'un avion.

visent a valider certains modéles. Dans cette catégorie on pourra notamment citer les tra-
vaux de Foin [Foin1999213 ], de De Cazenove [deCazenove2012433 ] ou encore Kung
et Singh [Kung1998781 ].

1.4/ MODELES DE PLAQUE MULTICOUCHE

Par modéle de plaque, on entend un modéle dans lequel on effectue une approximation
de 'estimation des variables du champ de déplacement — généralement sur I'épaisseur
de la structure — destinée a modéliser le comportement d’'une plaque — le plus souvent
multicouche —. Il n’est pas rare de rencontrer d’autres définitions d’'un modéle de plaque,
par exemple, Carrera [carrera_theories_2002 ], définit un modéle de plaque comme un
modéle dans lequel le degré d’interpolation au travers de I'épaisseur est au moins d’'un
degré inférieur a celui des autres directions.

Parmi les modéles de plaque, on distingue deux grandes familles, les modéles Equivalent
Single Layer (ESL — modéle couche équivalente) et les modéles Layer-Wise (LW — par
couche). Les modéles ESL expriment chaque composante du champ de déplacement en
fonction de variables définies sur un plan de référence, décrit par les coordonnées x et
y dans le plan, et fonction de z la direction normale au plan x,y traduit ce qui se passe
dans I'épaisseur. De maniere générale, z est découplée des directions x et y. Chaque
composante des champs de déplacement, de déformation et de contrainte se développe
selon z a l'aide de P fonctions de la fagon suivante :

Fy,2=f0)Fi@+ -+ fpxy) Fp(2) (1.1)

De fait, le nombre de variables est alors indépendant du nombre de couches. Les fonc-
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tions F, (z) sont généralement obtenues en posant des conditions cinématiques sur le
champ de déplacement.

Les formulations LW, quant a elles, proposent une variation des composantes du champ
de déplacement a l'intérieur de chaque couche. Les champs sont alors exprimées pour
la couche n de la fagon suivante :

1y, = fONFI @+ + fp(xy) Fp(2) (1.2)

Lors de la discrétisation du systeme, le nombre de degrés de liberté du systéme est alors
directement dépendant du nombre de couches. De ce fait, ce dernier type de modéle
ne peut étre considéré comme une formulation strictement bidimensionnelle. Bien qu’ils
peuvent se révéler plus précis, ceux-ci impliquent souvent un plus grand nombre de de-
grés de liberté, ce qui les rend moins avantageux que les modeles ESL. Notre étude
se concentrera donc essentiellement sur les modéles de plaque ESL dont le nombre de
degrés de liberté ne dépend pas du nombre de couches.

De maniére plus générale, la modélisation des plaques peut étre réalisée au
travers de plusieurs méthodes admettant une ou plusieurs approximations. Plu-
sieurs travaux comme ceux de Noor [Noor1990233, noor_mechanics_1992 ],
Reddy [Reddy27493483 | et Carrera [carrera_theories_2002 ] font I'état de I'art sur
les théories des plaques. Les paragraphes de cette section présentent un résumé des
principales méthodes.

Méme si ces solutions ne satisfont pas la définition des modeles de plaque présentée ci-
dessus (puisqu’elles n’admettent aucune approximation sur la description des variables
au travers de I'épaisseur de la plaque), il convient de les mentionner puisqu’elles sont
souvent utilisées avec les modéles de plaques a titre de comparaison. Par ailleurs, les
solutions exactes utilisées pour des plaques en flexion ne refletent que trés rarement
les "cas réels". La plupart d’entre elles impliquent des conditions aux limites simplement
appuyées et nécessitent un champ cinématique imposé a la plaque ce qui est difficile a
reproduire expérimentalement. Leur importance est cependant cruciale puisque ce sont
des méthodes exactes qui permettent le plus souvent d’évaluer la qualité des modeles
de plaques, qui eux sont basés sur des hypothéses simplificatrices.

Les premieres solutions exactes furent données pour des plaques en flexion cylin-
drigue composées de matériaux isotropes. Ainsi en 1877 Lévy [levy_memoire_1877
] donne une solution exacte pour les plaques isotropes rectangulaires en flexion
cylindrique. Pour les cas limités aux plagues multicouches rectangulaires simple-
ment appuyées dont les axes d’orthotropie sont confondus avec le repére de la
plague, Pagano [pagano_exact_1969, pagano_exact_1970, pagano_influence_1970
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] présente une solution pour le cas statique et Srinivas [srinivas_flexure_1969,
srinivas_bending_1970, srinivas_exact_1970 ] et Kulkarni [kulkarni_dynamic_1972
] pour le cas dynamique. Ces solutions font partie des solutions les plus connues et les
plus employées encore a ce jour dans la littérature. Par la suite une autre méthode per-
mettant de simuler la flexion des plaques orthotropes avec un empilement de couches
symétriques a été présentée par Reddy [reddy _new_1991 ] pour le cas statique et
Noor [noor_three-dimensional_1992 ] pour le cas dynamique. Pour ces modéles ba-
sés sur les équations d’équilibre de la mécanique, aucune approximation n’est effectuée
pour I'estimation de la distribution des contraintes et des déformations.

A partir de ce point, tous les indices grecs prennent les valeurs 1 ou 2, les indices latins
prennent les valeurs 1, 2 ou 3. La convention de sommation d’Einstein est utilisée seule-
ment pour les indices. La virgule, utilisée dans un indice indique une dérivée partielle
pour le(s) indice(s) qui la suive(nt).

Dans la littérature, plusieurs modeéles, qualifiés de modéles de plaque classiques sont
souvent cités et utilisés a des fins de comparaison. Nous en faisons ici une bréve des-
cription :

— La CLT (Classical Lamination Theory — théorie classique des stratifiés). Ce mo-
dele est la généralisation pour des matériaux anisotropes du modele de Love-
Kirchhoff [kirchhoff_uber_1850, kirchhoff1850schwingungen, Love1888 ]. Cette
théorie ne tient pas compte du cisaillement transverse et suppose que les déplace-
ments de membrane, en tout point de la plaque, sont uniquement dépendants des dé-
placements de membrane u!, u9, et des dérivées de la fleche w?, au plan de référence
(Pexposant 0 indique que la variable est exprimée au plan de référence). Le champ
de déplacement associé est présenté dans I'équation (1-3). La figure 1.6 illustre I'état
déformé d’une structure monocouche avec le modele de Love-Kirchhoff : la section de
la poutre déformée reste orthogonale a I'axe neutre, les contraintes et déformations de
cisaillement transverse sont nulles. Cette formulation a tendance a sous-estimer les
fleches et sur-estimer les fréquences propres des structures modélisées, cette erreur
étant encore plus grande pour les stratifiés fortement anisotropes. Cependant, ce mo-
dele permet de décrire correctement le comportement de plaques simples fortement
élancées ou avec une épaisseur faible par rapport a la longueur d’'onde de flexion, d’ou
son appellation de modéle de "plaques minces".

{ua(x, ¥.2) = ud(x,y) — 2w’ (x, y) (1.3a)
w(x,y,z) = wo(x, y) (1.3b)

— La FSDT (First-Order Shear Deformation Theory — théorie de déformation en cisaille-
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FIGURE 1.6 — Paramétres géométriques d’'une structure monocouche avec le modéle de
Love-Kirchhoff.

FIGURE 1.7 — Parameétres géométriques d’'une structure monocouche avec le modéle de
Mindlin-Reissner.

ment au premier ordre). Aussi appelé modele de Mindlin-Reissner ou encore "théorie
des plaques épaisses”, ce modeéle pose pour hypothése une déformation de cisaille-
ment transverse constante au travers de I'épaisseur de la plaque, le déplacement d’'un
point de la plaque dépend cette fois de u?, u), des dérivées de la fleche w9, et des
cisaillements ;. Léquation ("4 présente le champ de déplacement associé a ce
modele. Celui-ci, développé par Reissner [reissner1945effect ], fut le premier mo-
deéle de plaque prenant en compte les contraintes de cisaillement transverse ; Mind-
lin [mindlin1951influence ] développa la théorie de déformation en cisaillement au
premier ordre basé sur les déplacements.

e (%, 3, 2) = U (6, 3) + 2 (Y252, 3) = w5, (x, 7)) (1.4a)
w(x,y,2) = w'(x,) (1.4b)

Le plus souvent, le champ de déplacement lié a la FSDT est écrit en fonction des
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rotations ¢0(x,y) = ¥2,(x,y) — w%,(x,y). Il est donc commun de rencontrer le champ de
déplacement associé sous la forme suivante :

{u(xx, ¥,2) = ud(x,) + 2 (1.5a)
w(x,y,2) = wl(x,y) (1.5b)

— La HSDT (Higher-order Shear Deformation Theory — théorie de déformation en ci-
saillement d’ordres supérieurs). Initialement développé par Reddy [Reddy1984 ], ce
modele, reprenant les bases de la théorie de déformations en cisaillement au premier
ordre, impose une variation des déformations de cisaillement transverse selon un poly-
néme du troisieme ordre permettant aux contraintes de cisaillement transverses d’étre
nulles aux limites supérieures et inférieures du stratifié. La formulation proposée par
Reddy implique donc le champ de déplacement suivant :

473

st (1.62

w(x,y,2) = w’(x,) (1.6b)

%@%D=@mw—w%LW+&—

pour un stratifié défini entre —h/2 et h/2 avec h I'épaisseur totale du stratifié. Ce modéle
est particulierement efficace pour modéliser la flexion de plaques isotropes.

Selon Carrera [carrera_use_2004 ], les structures multicouches font apparaitre un
champ de déplacement continu par morceaux au travers de I'épaisseur du stratifié. Le
changement de pente d'une variable du champ de déplacement entre deux couches
considérées parfaitement liees est connu sous le nom d’effet Zig-Zag (ZZ). Cet ef-
fet est du aux conditions de continuité interlaminaires des contraintes de cisaillement
transverse. Cette théorie a donné lieu a plusieurs modéles ESL ou encore LW. Parmi
les modeles ESL ceux-ci sont divisés par Carrera [Carrera2003 ] en tant que Lekh-
nitskii multilayered theory [lekhnitskii_anisotropic_1968 | (LMT — théorie multicouche
de Lekhnitskii) et Ambartsumian multilayered theory [ambartsumian_fragments_1991
] (AMT — théorie multicouche de Ambartsumian) qui toute deux imposent des condi-
tions de continuité des contraintes de cisaillement transverse, comme proposé par Whit-
ney [whitney_higher_1973 ]. Le modeéle Reissner multilayered theory (RMT — théo-
rie de Reissner multicouche) fait quand a lui appel a des hypothéses de déplace-
ments et de contraintes de cisaillement transverse indépendantes. Dans la continuité
des modeéles RMT, Murakami [murakami_laminated_1986 ] propose un jeu de fonc-
tions polynomiales simples capables d’émuler I'effet ZZ. Plusieurs travaux ont ensuite
suivi ceux de Murakami, parmi les plus récents, on peut notamment citer ceux de De-
massi [demasi_refined_2005 ] qui propose des fonctions Zig-Zag d’ordre plus élevées,
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et de Brischetto [brischetto_improved_2009 ]| qui réalise une étude sur des panneaux
sandwichs basée sur des fonctions Zig-Zag.

[l convient aussi de mentionner dans la catégories des modéles ZZ les articles de
Pai [Pai1995 ] et de Kim [kim_enhanced_2006 ] qui proposent deux autres fonctions
polynomiales par morceaux (un polyndbme pour chaque couche) de description de la
déformation de cisaillement transverse permettant la description de la répartition du ci-
saillement au travers de I'épaisseur du stratifié. Tout deux respectent les conditions de
contraintes nulles aux limites supérieures et inférieures du stratifié ainsi que la conti-
nuité des contraintes aux interfaces. Les fonctions en résultant sont alors une série de
polynémes du troisiéme ordre, continus entre chaque couche, permettant d’assurer les
conditions de continuité requises.

Le nombre de modeles de plaques devenant croissants, plusieurs auteurs ont ten-
tés de proposer des formulations unifiées permettant de réécrire les principaux mo-
deles de plaque. La plus connue de ces formulations est la Carrera Unified Formula-
tion [carrera_unified_2005 | (CUF - formulation unifiée de Carrera). Cette formulation
permet, en exprimant chaque variable comme présentée dans les équations (') et (12,
de décrire les modéles respectivement ESL et LW. Cependant, la plupart des travaux
faisant référence a la CUF limitent les fonctions F;(z) a des puissances de z ou des po-
lynbmes de Legendre. Par ailleurs, méme si la plupart des modéles de plaques peuvent
s’exprimer par rapport a la CUF, cette formulation en elle méme n’est pas directement un
modele de plaque.

De maniere générale, le terme amortissement regroupe deux familles de phénoménes

distincts :

— Lamortissement propre aux matériaux, trés présent dans les matériaux polymeres,
est généralement d( a un comportement viscoélastique de ceux-ci. C’est a dire que
les contraintes sont reliées au déformations non seulement par le module de Young,
mais aussi par une constante d’amortissement liée au temps. En d’autres termes, les
matériaux viscoélastiques ont une capacité a dissiper I'énergie, caractérisée par leur
facteur de perte 7.

— Lamortissement de la structure en elle méme porte lui sur les frottement des piéces
d’une structure les une avec les autres.

Pour cette étude, les assemblages des structures étudiées étant réputés parfait, notre
modéle se limitera a la modélisation de 'amortissement propre au matériau. La modéli-
sation de ce phénomene est réalisée avec I'aide de modéles rhéologiques. Nous faisons
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FIGURE 1.8 — Modéle de Kelvin-Voigt.
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FIGURE 1.9 — Modeéle de Maxwell.

ici une liste des modéles rhéologiques les plus connus :

— Le modele de Kelvin-Voigt est représenté par un amortisseur purement visqueux
et un ressort hookéen mis en parallele comme illustré dans la figure 1.8. |l permet
de simuler a la fois les propriétés élastiques et visqueuses d’'un matériau ainsi que
le fluage mais ne permet cependant pas de prendre en compte les effets tels que la
relaxation de contraintes, ou encore 'endommagement.

— Le modele de Maxwell est représenté par ressort hookéen et un amortisseur en série
(figure 1.9). Ce modéle permet de prendre en compte la relaxation de contraintes, mais
pas I'amortissement hystérique ou le fluage.

— Le modele de Zener est composé d’un ressort hookéen et d'un modele de Maxwell
en paralléle (figure 1.10). Ce modele combine les aspects du modéle de Maxwell et de
Kelvin-Voigt et permet de prendre en compte la relaxation de contraintes et le fluage
mais reste plus complexe a mettre en ceuvre.

— Le modele de Burger consiste en un modele de Maxwell et un modéle de Kelvin-Voigt
mis en série (figure 1.11). Ce modéle combine lui les aspects du modéle de Maxwell et
de Kelvin-Voigt et possede les méme capacités de simulation mais possede un élément

E

E, n

FIGURE 1.10 — Modéle de Zener.
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FIGURE 1.11 — Modéle de Burger.

supplémentaire.

Plus généralement, le choix d’'un modéle analogique constitué d’'un ensemble de ressorts
et d’amortisseurs revient a exprimer une loi de comportement qui lie une composante de
la contrainte a une composante de la déformation par des opérateurs linéaires P et Q de
la forme :

Po = Qe. (1.7)

Cette démarche est décrite par Wiliams [Williams_Structural_1964 ] et
Ferry [Ferry_Viscoelastic_1970 ]. En régime harmonique, cela revient a exprimer
le module de Young complexe comme une fraction polynomiale :

E(w) = M (1.8)

O(w)

Cette étude, étant appliguée au domaine des vibration, les chargements sont donc cy-
cliques, le modele de Kelvin-Voigt est choisi afin de modéliser le comportement viscoélas-
tique des matériaux. Limplémentation de ce modele est réalisée a I'aide d’'un module de
Young complexe. En effet, pour ce modele, les contraintes o(¢) a un instant r dépendent
du temps et s’expriment en fonction des déformations &(¢) :

,de()
dr

o(t) = Ee(t)+n (1.9)

ou E est le module de Young et 1" est le coefficient de viscosité du matériau associé.

Sur un systeme vibratoire, les variables étant exprimées sous forme complexe (&(¢) =
gexp(jwt + ¢ )), les contraintes s’écrivent alors :

o) = O'exp(jwt+<pl) (1.10)

sexp(jwt+<,0”)(E+j77Vw) (1.11)

On peut alors choisir d’exprimer un module de Young complexe £ = E + j5’w le sym-
bole ~ désignant une quantité complexe. Ceci permet alors d’écrire la loi de Hooke pour
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des grandeurs complexes (contraintes, déformations et module de Young) :
F(w) = E(w)&(w) (1.12)

Il ne faut cependant pas confondre coefficient de viscosité et facteur de perte. En effet,
dans la littérature, les deux quantités sont souvent notées n. Dans ce document, nous
distinguerons n", le coefficient de viscosité et n; le facteur de perte, aussi noté tan (§) défini
de la fagon suivante :

Im (E (w))

n(w)=tan(6(w)) = ——— =717"w (1.13)

Re (E (w))
La prise en compte de l'amortissement dans les poutres peut étre implémentée
via des méthodes diverses et plusieurs travaux ont été rédigés sur le sujet. DiTa-
ranto [ditaranto_theory_1965 ] propose un modéle prenant en compte I'amortissement
sur une poutre permettant d’obtenir une équation différentielle complexe du sixieme
ordre de vibration de la poutre amortie. Mead et Markus [mead_forced_1969 ] pro-
posent une série de solutions pour cette équation avec des conditions aux limites don-
nées. Yan et Dowel [yan_governing_1972 ] proposent une équation de vibration des
poutres ou des plaques sandwich non symétriques. Mead [mead_comparison_1982
] propose une comparaison des équations de modeéles présentés précédemment.
Rao [rao_frequency_1978, rao_dynamic_1993 ] résout par la suite pour des poutres
et des plagues avec différentes conditions aux limites le probleme des calculs de fré-
quences propres amorties et le calcul du facteur de perte associé.

Bien qu’indépendante du modéle en lui-méme, la méthode de discrétisation choisie pour
la simulation d’'une structure ne reste pas moins essentielle. Les résultats obtenus sont
issus d’un couple modele cinématique-méthode de discrétisation. La qualité des résul-
tats obtenus peut aussi étre étroitement liée a la méthode de discrétisation choisie. En
effet, certaines méthodes (comme par exemple la procédure de Navier) sont capables
de fournir un champ cinématique proche de la solution. Ceci permet alors d’obtenir des
résultats de tres bonne qualité avec un systeme de taille réduite.

Par ailleurs le choix de la méthode de discrétisation est généralement étroitement lié au
cas étudié. Par exemple, dans sa version classique, la méthode de Rayleigh-Ritz pour les
modeles de plaque n’est pas adaptées aux structures non rectangulaires. Par opposition,
la méthode des éléments finis, avec un choix judicieux de formulation de I'élément permet
de modéliser des structures bien plus complexes. La méthode de discrétisation est donc
un élément essentiel de la simulation. Nous proposons ici trois méthodes de discrétisation
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adaptées a notre modéle de plaque permettant de répondre a différents problemes.

Il convient dans un premier temps de mentionner I'existence d’une méthode de discrétisa-
tion qui, sous certaines conditions, est exacte. Cette méthode est similaire a celle utilisée
dans la plupart des solutions exactes mentionnées dans la section 1.4.1 a la différence
gu’elle est applicable a un modeéle de plaque. Nous choisissons ici de nous référer a cette
méthode par le terme générique de procédure de Navier [navier1823extrait ]. Cette mé-
thode est adaptée a des cas de chargement particuliers : c’est a dire que chaque variable
est projetée sur une fonction d’'une base trigopnométrique adaptée. Dans sa version la plus
classique, cette méthode est utilisée pour simuler une plaque rectangulaire simplement
appuyée chargée avec une pression de forme sinusoidale ; la déflection associée est
alors supposée sinusoidale. Les autres degrés de liberté sont exprimés sur une base
trigonométrique correspondante. Cette méthode est tres utilisée puisque la qualité des
résultats obtenus est uniquement liée a la qualité du modeéle cinématique et non a la
méthode de discrétisation.

Cette méthode peut étre adaptées a un grand nombre de cas d’étude, et est commu-
nément implémentée dans le but de tester un modéle. Parmi les travaux sur la flexion
des plaques, on peu notamment citer ceux de Lett [lett1942bending ] qui présentent
une application de la méthode aux plaques soumises a de larges déformations. Dans
un premier temps, uniquement réservée aux stratifiés dont les matériaux constituants
ont les axes d’orthotropie confondus avec le repére, la méthode a été étendue aux
probléemes dynamiques et aux stratifiés avec une séquence d’empilement antisymé-
trique [Khdeir1988437 .

Par ailleurs, les solutions exactes présentées dans la section 1.4.1 se basent aussi sur
ces méthodes de discrétisation.

Tout comme pour les solutions exactes, ces méthodes, bien que trés utiles pour évaluer
la qualité d’'un modele, ne permettent en aucun cas le calcul de cas pratiques. En effet,
le fait d'imposer une condition aux limites simplement appuyée sur tout le pourtour de
la plaque revient a imposer un déplacement sinusoidal sur la fleche. Elles sont donc
réservées a I'étude de cas académiques.

La méthode de Rayleigh-Ritz permet, en projetant les déplacements sur une base don-
née, d'implémenter un modele pour la simulation de plaques rectangulaires soumises
a des conditions aux limites et des chargements variés. Le principal avantage de cette
méthode réside dans le fait que, avec un choix de base de projection adapté, les dé-
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rivées — successives — des fonctions de la base sont simples a obtenir, et par consé-
quent, cette méthode est tout a fait adaptée aux modeéles nécessitant le calcul des
dérivées multiples de la base. La qualité des résultats obtenus est souvent relative au
choix de la base. Parmi celles-ci, nous pouvons mentionner la base présentée par Bes-
lin [Beslin1997633 ]| qui est particulierement adaptée au calculs de vibration pour di-
verses conditions aux limites. Cette méthode, classiguement employée en vibration, a été
utilisée par Plessy [plessy_comportement_2009 ] et Loredo [Loredo2011 ] pour modé-
liser une plaque munie d’un ou plusieurs patchs amortissants. Pour ces études, Plessy et
Loredo ont implémenté le modéle de Woodcock [woodcock_generalized_1995 ] avec la
méthode de Rayleigh-Ritz, couplé a différents indicateurs vibroacoustiques afin de mo-
déliser l'effet de différentes configurations de patchs PCLD.

La méthode des éléments finis a progressivement fait son apparition depuis les années
1950. C’est une méthode qui permet la résolution numérique des équations aux dérivées
partielles. Couplée a des modeles physiques, elle est couramment utilisée comme mé-
thode de discrétisation afin de simuler le comportement de structures complexes proches
de cas pratiques. Les principes généraux de la méthode ainsi qu’un certain nombre de
raffinements sont regroupés dans le livre de Zienkiewicz [zienkiewicz_finite_2000 ].

Lutilisation de cette méthode, trés répandue dans la milieu industriel, a cependant cer-
taines limites pour des modéles faisant intervenir des dérivées successives des variables.
En effet, au contraire de la méthode de Navier ou de Rayleigh-Ritz, I'utilisation des dérivés
multiples des fonctions de formes nécessitent 'implémentation d’éléments dont les déri-
vées des fonctions de forme sont continues entre les éléments. Ce type d’élément, pré-
senté par la suite dans la section 3.3, est beaucoup plus complexe a implémenter et reste
assez peu utilisé. Une autre limite de la méthode des éléments finis est le verrouillage
des plaques en cisaillement. En effet, certains modeles de plagues nécessitent un degré
d’interpolation inférieur pour les cisaillements transverses par rapport a la fleche. Cette
contrainte, bien que théoriquement mineure, peut aussi rendre I'implémentation de ces
modéles de plaque plus complexe.

Loptimisation du dimensionnement des traitements amortissants viscocontraints est une
des finalités de la modélisation de ceux-ci. Dans le but de maximiser leur efficacité et de
limiter 'ajout de masse au systéme, un travail d’optimisation est nécessaire.

Nous pouvons tout d’abord citer les travaux de Lifshitz [lifshitz_optimal_1987 ] traitant
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du rapport d’épaisseurs optimal entre la couche de matériau viscoélastique et la couche
de contrainte pour un sandwich. Cette étude peut étre étendue aux plaques compléte-
ment recouvertes de patchs amortissants puisque ces structures peuvent également étre
considérées comme des sandwich asymeétriques.

Dans les cas pratiques et pour des raisons de limitations de la masse, il est rare
qu’une structure soit complétement recouverte, il est donc nécessaire d’optimiser la
taille et 'emplacement des patchs. Lors du recouvrement partiel d’'une plaque de dis-
positifs amortissants, tels que ceux présentés dans la section 1.2.1, un choix perti-
nent de la taille et la position des patchs permet de maximiser I'amortissement des
amplitudes vibratoires. Or, aucune régle générale de dimensionnement des patchs
n'est établie a ce jour, et de nombreux travaux mettant en ceuvre une grande variété
de méthodes d’optimisation ont été publiés. Plunkett et Lee [plunkett_length_1970 ]
furent parmi les premiers a proposer une optimisation de la dimension de patchs sur
une poutre. lls proposent de couper la couche de contrainte en plusieurs sections,
la taille de ces section dépendant de la rigidité totale de la poutre. Nokes et Nel-
son [nokes_constrained_1968 ] furent parmi les premiers a chercher a optimiser 'amor-
tissement d’une poutre partiellement recouverte. Cette étude montre que pour certains
cas, 'amortissement maximum n’est pas nécessairement obtenu avec un recouvrement
total de la poutre. Zheng [zheng_optimization_2004 ] propose une minimisation de
I'énergie vibratoire a I'aide d’un algorithme génétique pour une poutre munie d’'un seul
patch. Zheng [Zheng2006 ] présente par la suite, une comparaison de quatre algorithmes
d’optimisation : une approximation par la méthode des sous-problémes, une méthode
d’optimisation du premier ordre, un algorithme séquencé quadratique, et un algorithme
génétique. D’autres algorithmes, tels qu’une méthode basée sur des gradients dévelop-
pée par Lee [Lee2008 ] ou encore Alvelid [Alvelid2008 ] et un automate cellulaire pro-
posé par Chia [Chia2008, Chia2009 ], ont étés implémentés ; quoi qu’il en soit, les ré-
sultats apportés par ces algorithmes n’ont pas permis d’apporter de solution générale au
probléme du recouvrement partiel des plaques.

Comme suggéré par Perry [perry_modified_2006 ], il est donc possible de séparer les
algorithmes d’optimisation en deux catégories distinctes : ceux basés sur des principes
mathématiques rigoureux tels que la méthode des gradients conjugués, et les méthodes
non usuelles basées sur des concepts heuristiques tels que les algorithmes génétiques.

La principale limite des méthodes heuristiques est généralement leur colt de calcul
élevé : la plupart d’entre eux nécessitent de nombreux calculs sur différentes configu-
rations avant de converger vers une solution. Lintérét d’'un modéle de plaque permettant
le calcul des structures patchées prend alors tout son sens : les modéles de plaques ca-
pables de simuler de fagon précise avec un nombre de degrés de liberté limité permettent
de minimiser le colt d’utilisation de tels algorithmes.

Cette premiére catégorie d’algorithme, bien que trés efficace sur des problémes simples,
peut se heurter a divers problemes lorsque le nombre de variables a optimiser est impor-
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tant. Le principal probléeme étant que I'algorithme peut converger sur un minimum local
sans trouver la solution optimale au probleme.

Enfin, la plupart des études réalisées a ce jour font appel a des modeéles de plaque
(ou de poutre) simplifiés n’utilisant pas de description fine du cisaillement et limitant par
conséquent la capacité de ces algorithmes a obtenir des résultats satisfaisants.

Les éléments présentés dans cette section montrent de récentes tendances qui im-
pliguent de nombreux changements dans les méthodes de calculs. D’'une part, les as-
semblages, qui étaient jusqu’a présent composés de matériaux isotropes, deviennent
des assemblages complexes, incorporant des matériaux avec et des propriétés forte-
ment anisotropes. Les besoins de modélisation des structures évoluent fortement, et bien
que la plupart des probléemes soient théoriquement résolvables avec des méthodes tri-
dimensionnelles et que les capacités de calculs des ordinateurs modernes soient trés
importantes, les modeles de plaques posés sur des hypothéses cinématiques restent
indispensables pour permettre le calcul sur de larges structures ou encore l'utilisation
d’algorithmes d’optimisation tels que les algorithmes génétiques.



Ce chapitre présente un modele ESL générique permettant de décrire le comportement
d’'une plaque multicouche composée de plusieurs plis orthotropes admettant une varia-
tion de la déformation cisaillement transverse au travers de I'épaisseur. La variation de la
déformation de cisaillement transverse est décrite au moyen d’un jeu de fonctions appe-
lées warping functions (fonctions de description du cisaillement transverse). Le principal
avantage de cette formulation est sa souplesse : en effet, différents jeux de warping func-
tions peuvent étre implémentés, permettant ainsi de mettre en ceuvre différents modeéles.
Ceci confere a cette formulation une capacité a reproduire les champs cinématiques
d’autres modéles, permettant ainsi de retrouver les formulations de plaques classiques
(notamment la FSDT et HSDT), les modéles issus de littérature fonctionnant a l'aide de
warping functions, ainsi que de proposer et d’'implémenter de maniére aisée d’autres
jeux de fonction. Du fait de sa polyvalence, ce modéle sera celui utilisé tout au long de
ce document ; seuls les warpings functions varient. Le modele, sous sa forme actuelle,
est celui décrit en détails par Loredo [Loredo2011 ]. Toutefois certaines publications an-
térieures [nayak_free_2002, kim_enhanced_2006 ] comprenant des warpings functions
utilisent un modeéle similaire sans expliciter le champ de déplacements associé ou une
formulation claire permettant de les implémenter.

Les sections 2.1 a 2.6 présentent le modeéle, son champ de déplacements ainsi que les
équations d’équilibre associées. La section 2.7 présentent différents jeux de Warping
Functions permettant de formuler plusieurs modéles dont les modéles classiques FSDT
et HSDT (il a été choisi d’ignorer les modéles de Love-Kirchhoff puisque celui-ci ne décrit
pas de cisaillement transverse).
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Pour un stratifié composé de N couches, toutes les quantités sont exprimées au plan de
référence, ou par convention z = 0. Classiquement, les modéles de plaques positionnent
les stratifiés entre h/2 et —h/2, ou h est la hauteur totale du stratifié, et le plan milieu est
plan de référence ; la présente formulation se veut souple et permet de choisir le plan de
référence. On pourra donc choisir de prendre comme plan de référence, selon les cas :
— le plan milieu du stratifié,

— le plan milieu d’une couche de référence,

— un autre plan choisi de maniére arbitraire.

Cette souplesse permet notamment I'étude de plagues inhomogénes, par exemples
celles équipées de patchs viscocontraints comme présenté dans la section 1.2.1. On
remarque qu'’il est donc possible d’ajouter des couches au dessous de la couche
de référence. Par ailleurs, afin de pouvoir formuler les warpings functions de cer-
taines formulations (notamment celles de Woodcock [woodcock generalized_1995,
woodcock_free_2008 ], Pai [Pai1995 | et Kim [kim_enhanced_2006 ]), lorsque le plan
de référence est choisi a I'interface de deux couches, il faut attribuer le plan de référence
a une couche donnée.

Les valeurs des variables au plan de référence sont notées avec un exposant 0. La fi-

gure 2.1 illustre les définitions suivantes :

— 7¥ est I'excentrement du plan milieu de la couche ¢ par rapport au plan de référence.

— la £®Me couche a une hauteur i et est située entre les élévations ¢¢ et /*!, d’ou
hf — §€+1 _{f_

Le champ de déplacements de chaque point s’écrit comme suit :

{mx, %,2) = g (%, y) = W (X, ) + Cap(Dy (%, ) (2.1a)
w(x,y,2) = w'(x,y) (2.1b)

ol I'exposant 0 représente les quantités de la couche de référence. Les variables u?, w°,
O 0 7 7 .
w} ety]; sont représentées dans la figure 2.1.

La méthode choisie pour décrire cette variation de la déformation de cisaillement trans-
verse au travers de I'épaisseur est d’utiliser la dérivée d’'une Warping Function qui établi
le lien de proportionnalité entre le cisaillement sur le plan de référence et la valeur du
cisaillement en tout point de I'épaisseur de la plaque. Ceci pose donc I'hypothése que,
puisque ¢,.p3(z) ne dépend pas des coordonnées x et y, la variation du cisaillement au
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FIGURE 2.1 — Paramétres géométriques de la structure multicouche (présentée a gauche
dans un état non déformé) et définition des déplacements.

travers de I'épaisseur de la plaque est constante quelque soit x et y.

Ya3(%,7:2) = @ap3 @V (%)
et on choisira donc :

(2.2)
Pap.3(0) = 55

(2.3)
Lintégrale de la dérivée de la warping function f;) Ya33(2)dz permet de retrouver I'angle
du a la déformation de cisaillement. Les conditions cinématiques imposées par le champ
de déplacement de I'équation ?-') nous permettent d’écrire :
®ap(0) =0

et 7(2)3.

(2.4)
Le champ de déplacements en tout point de la plaque est ensuite décrit par I'équation
(21) et ne dépend plus que des cing paramétres de la couche de référence : ul, u

0.0 0
2 W3 Y13
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Le champ de déformations issu de I'équation ?-!) s’écrit :

1
8aﬁ(xa ,2) = 825(36’ y) = ngyﬁ('x’ y)+ E (‘Pay(z)723ﬁ(x’ y) + QDﬁy(Z)’)’?,&a(x, y)) (258)
1,
£a3(X,y,2) = 5%[;(2)723(16, y) (2.5b)
£33(x,y,2) =0 (2.5¢)

On remarque que les &), w° ,, 7, 5 et vy, forment un jeu de 12 variables généralisées
indépendantes que I'on considéere pour ce modele.

Afin de réduire la relation contraintes-déformations a cing variables comme pour tout
modele de plaque classique, on suppose un état de contraintes planes généralisées dans
la structure. Cela revient donc a poser pour hypothése que o33(x,y,z) = 0. On élimine
alors &33 pour obtenir la loi de Hooke modifiée :

o11(2) [ 01112 Q1122(2) 0 0 0@ | en@
022(2) 012 0222(z2) 0 0 O212(2) £22(2)
023(2) ¢ = 0 0 C2323(2) Ci323(2) 0 ¥23(2) (2.6)
o13(2) 0 0 Ci323(2) Ci313(2) 0 Y13(2)
o 12(2) | Q1112(2)  O212(2) 0 0 O1212(2) |\ 712(2)

ou Qqpys sont les rigidités de contraintes planes généralisées avec

Cop33C33ys
Qaﬁ&y = Caﬂéy - QIBC—Y (27)
3333
De méme il est possible d’évaluer £33 résultant de I'effet Poisson avec :
Cap33
€33 = — Cdﬁ Eap (28)
3333

Avec l'aide des équations 35 et 28 | est ensuite possible d’écrire le champ de
contrainte a partir des 12 variables généralisées citées plus haut.

Tap(£,7,2) = Qupyo(@) (89505, 3) = 05(x, ) + @125 5%, ) (2.9a)
Ta3(%,7,2) = Ca3p3, (D7,13(%, ) (2.9b)
033(x,y,2) =0 (2.9¢)

La disparition du terme 1/2 de I'’équation 23 dans I'équation 392 n’est pas évidente. La
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démonstration, en omettant les x, y, et z, est la suivante :

1 0 0 1 0 1 0
EQaﬁy(S (%;0’,43,5 + sﬂapyﬂg,y) = EQaﬁy6¢yp7H3,5 + 5Qa,6’y6‘106,u7#3,y
1 0 1 0
= EQaﬂywwﬁ’,ﬁ,& + EQaﬁéy‘Pw?’y&é (2.10)

0
= Qapys PyuYuz.s

Il est possible de calculer la densité d'énergie de déformation J = 1/2¢;;0;; a partir des
formules (29 et (29) intégrées au travers de I'épaisseur pour obtenir une densité d’énergie
de déformation surfacique J(x,y) :

1

i
J = —f 3ij0'ide (2-11)
2 14

On remplace par le champ de déplacement et on rappelle que avec les hypothéses de
contraintes planes o33 = 0.

1 S
J = 3 f (80,30' ap 2803043 + €330 33) dz
4
Lo 0 1 0 0 1, 0
= 5 . g(xﬁ - Zw,wﬁ + E (¢ay(2)773ﬁ + ‘pﬁ)’(z)’yyla) Oap + 2§¢aﬁ(2))’ﬁ30—a3 dZ
60
L (0 0 0 / 0
=5 Eap = W op + Pay(DV35) Tap + Pop(2)Vg3003 | dz (2.12)
2 Js B B Y38 BT
Ce qui peut aussi étre réécrit :

1

J = 5 |£0gNap = wisMap +¥y3 5Pys + Vi3 O] (2.13)

avec les quantités suivantes que sont les forces généralisées :

é’n

{Nap, Mg, Pyg} = {1, 2, Pay(2)}0ep(z)dz (2.14a)
é’()
é’”

Op = f( . Pap3(2)03(2)dz (2.14b)

Chaque force généralisée est associée a un déplacement généralisé dans la formule de
I'énergie de déformation dans I'équation -3,

Nop et M,z sont respectivement les forces de membranes et les moments de courbure,
et Pos Q. sont des moments spécifiques associés aux warping functions, i. e. associés
au comportement de cisaillement transverse. On remarque que P,g # Pg, Ce qui, dans le
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cas général, donne un jeu de 12 forces généralisées.

On remarque que dans le cas d’une plaque patchée, et donc inhomogéne sur le plan
(x,y), les bornes d'intégration ¢° et (" peuvent varier en fonction de la présence d’un
patch ou non.

Les calculs des forces généralisées obtenues & partir des équations -9 et (214) donnent :

Nop = Aapysys + Bapyo(—W0s) + EapusVys 5 (2.15a)
Map = Bopys€)s + Dapys(—W0)s) + FapusVys 5 (2.15b)
Pag = Eysapsys + Fysap(—w'ys) + Gapus¥ i 5 (2.15¢)

Qo = Hap3Vps (2.15d)

ou les rigidités généralisées suivantes ont été introduites :

(’1
{A(Y,B75’ Baﬁyéa Dozﬁyé’ Eaﬂuéa Fa,By(S, Gvﬁ,ud} = o Qaﬁyé{ Iz, ZZ’ Pyu (2), Pyu (), ‘pav(z)‘pyu (2)}dz

é’n
Hy3p3 = f,;o ©ya,3(2)Cy353068,3(2)dz

(2.16a)

(2.16b)

Lobtention des N,z et M,z est directe, mais une attention particuliére doit étre apportée
au calcul des Py :

e
Pa,B = fo SDya(Z)O'yﬁ(Z)dZ
4

é’l‘l
= f ua(2) Qupys(2) (825 - ZW?%; + ‘Pyv(z)'y%,(s) dz
(0
= Ey(;aﬁé‘?,& + Fy&lﬁ(_w?yd) + GQ,BH5Y23,6 (21 7)

Dans cette derniére expression, les E,sqp €t F,s50p SONt identifiés avec I'aide de la symétrie
majeure du tenseur Q,5,5(2).

Les tenseurs A, B et D héritent des symétries du tenseur de Hooke, une symétrie pour
chaque paire d’indice appelée petite symétrie, et la grande symeétrie qui permet l'inver-
sion de deux paires d’indices, cette derniére étant reliée a I'existence de I'énergie de
déformation. Les tenseurs E et F perdent la symétrie sur la derniére paire d’indices, fai-
sant disparaitre la grande symétrie. Le tenseur G perd la symétrie sur les deux paires
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d’indices, mais garde la grande symétrie :

Pour les tenseurs A, B, D : A,Ba/yé = Aafﬂyé = Ay&rﬁ = A)«Sﬁ(x
pour les tenseurs E, F : Egays = Eapys # Eysap # Eyepa (2.18)
pour les tenseurs G : Ggays # Gapys = Gysap # Goypa

On dénombre donc 6 coefficients indépendants pour A, B et D, 12 pour E et F, 10 pour G,
et 3 pour H. Donc ce modele de plaque a un total de 55 coefficients de rigidité indépen-
dants dans le cas le plus général. Il est a noter que d’autres auteurs font référence a cette
méme formulation écrite sous d’autres formes [Loredo2011, woodcock_free 2008,
woodcock_generalized_1995 ]. Les forces généralisées sont alors placées dans des
vecteurs :

Py
N1 My
Py 0
N = N22 M= M22 P= Q= (219)
P2 10))
N1z M,
Py
et il en va de méme pour les déformations généralisées :
0
Y
0 0 13.1
11 Wi 20 0
e=qel b k=1 -wl, I= 33’2 y = (1)3 (2.20)
0 0 Y132 Y23
€12 —2w}, 0
Y231

Les forces généralisées sont alors liées aux déformations généralisées par deux matrices
de taille 10 x 10 et 2 x 2, remplies des rigidités généralisées de I'équation -16) :

N A B E||e
Mi=(B D Flikr {0Q}=[H|{y} (2.21)
P ET FT G||I
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La densité d’énergie cinétique surfacique E.(x,y) de la structure s’écrit :

1 é'll
E.(x,y) = 5 f p(x,y,2) (itg(x, Y, Dite (X, y,2) + W(x, y, )W(x, y,2)) dz

{0

1 e . 0N . .
=5 f 0 p(z)[ (i) — 2%, + Pap(2)7gs) (10 — 20, + Pup(2)¥ps) + <w°>2]dz
Ie

ANy 0. . . o
=5 fo P(Z)[ug 0 —2zad?, + 2“29%;3(2)723 + 23000,
Z

— 2200, 0ap(@)V 3 + Pap(D 13 Pan(2)V + (w0)2]dz (2.22)

Pour des raisons de simplification d’écriture, les x et y ont été enlevés dans les deux
derniéres lignes de cette formule.

On voit alors que I'énergie cinétique peut s’écrire au moyen des vitesses généralisées i?,
i3, w0, 39, et 39, et des masses généralisées :
é‘l‘l 2

{R,S,T, Uap, Vop, Wap) = f P, 2, 2%, 0ap(2), Pap(2)2, Pua(Deyp(2)}dz (2.23)

é‘O

On remarque que U,z et V,5 sont des tenseurs antisymétriques mais W,z est symétrique.
Il'y a donc 14 coefficients de masse indépendants a prendre en compte. La densité sur-
facique d’énergie cinétique peut alors s’écrire :

1
Ec(x,y) = =(RuQud — 28 udW°, + 2Upi035; + T 05,
2 B

a’V.a

Vi3 + Wegh 03l + R(Wo)z)dz (2.24)

En négligeant les forces extérieures, et en gardant la méme convention sur les indices,
les équations d’équilibre de la mécanique des milieux continus, s’écrivent :

Topp + Ta33 = Pl (2.25a)
Oa3a T 0333 = pil3 (2.25b)

Lintégration des équations (2% au travers de I'épaisseur, avec I'aide des équations ?-),
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(2.14) et (2.23) donne :

Nogp + [%3(1)]?0 = Rilg — S, + Uap¥}s (2.263)

Q5. + [0‘33(2)]?3 = Rii® (2.26b)

ou les Q¢ sont les efforts tranchants. Afin d’obtenir des équations supplémentaires, les
intégrales pondérées de I'équation 2253 ay travers de I'épaisseur sont calculées. Les
fonctions de pondération sont z et ¢, (z). Ceci donne quatre équations supplémentaires :

Mg + (003D}, = OF = Silg = T, + Vap¥ps (2.27a)

Py + [0y (D0 a3y = Oy = Uiy = Vary %, + Wi (2.27b)

Soit ¢ = [Uss(z)]gg la valeur du chargement sur la troisieme direction. Comme on sup-
pose qu’il 'y a pas de forces tangentielles sur les plans supérieurs et inférieurs de la
plaque, donc o,3(—h/2) = o43(h/2) = 0. On remarque qu’il N’y a pas de déformation gé-
néralisée correspondante aux efforts tranchants Q¢,. Cette déformation généralisée doit
donc étre éliminée en remplagant les valeurs de Q¢, obtenues avec la formule 2272 dans
I'équation (2269) ce qui permet d’écrire le systéme d’équations d’équilibre de la plaque :

Nogys = Ritg = SW5, + Uag¥ps (2.28a)
Moppa +q = Ri® + S , = Tii%, + VapVs 4 (2.28D)
POz,B,ﬁ — Qe = U,B(xug - Vﬂaw?ﬁ + Wafﬁygg (2280)

Les warpings functions sont des fonctions permettant la description des déformations et

contraintes de cisaillement transverses. Ces fonctions peuvent étre obtenues en formant

des polyndmes (pouvant avoir un jeu de coefficients pour chagque couche) qui respectent

(22) ot (23) et une ou plusieurs des conditions suivantes :

— la continuité des warping functions a chaque interface afin d’assurer la continuité des
déplacements

Iim @u5(z) = lim @z 2.29
lim s = im0 (2.29)

— lors de lintégration des go;ﬂ, les constantes d’intégration sont choisies de facon a ce
que ¢.p(0) = 0. Ce qui veut dire que le cisaillement transverse n'a pas d’effet sur le
déplacement du plan de référence.

— le respect des conditions de nullité des contraintes de cisaillement transverse aux li-
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E; (Pa) Er (Pa) Grr(Pa) Gir(Pa) vrr=vir
25x10° 1x10° 2x10° 5% 10° 0,25

TABLE 2.1 — Propriétés des plis du stratifié utilisé pour les warping functions présentées
dans ce chapitre.

mites supérieures et inférieures implique au travers de I'équation 29 que les tp;ﬂ sont
nuls aux plans supérieurs et inférieurs du stratifié. D’ou

Gop(—h/2) = @, 5(h/2) = 0 (2.30)
— le respect de la condition de continuité de contraintes de cisaillement transverse,

lim ou3(x,y,2) = lim 043(x,y,2) (2.31)
7—t- 7=+

permet d’écrire une relation sur les go;ﬁ. On rappelle que,

Ta3(%, 3, 2) = 2Ca3p3(2)ER3(X, 3, 2) = Capa (D), ()Y 03(%. ) (2.32)
D’ou,
Jim Caypa@ey @) = lim Caps (e () (2.33)

Ces warping functions sont présentées dans les sections 2.7.1 2 2.7.4.

Par ailleurs il est aussi possible d’obtenir les warping functions au travers de méthodes
alternatives parmi lesquelles on peut mentionner :

— l'utilisation de solutions analytiques,

— lintégration sur I'épaisseur du stratifié des équations d’équilibre de la mécanique,

— l'utilisation de résultats de calculs tridimensionnels.

Ces méthodes sont détaillées dans la section 2.7.5.

A titre d'illustration, pour les sections 2.7.1 a 2.7.5, les fonctions ¢, et ¢, sont tracées
pour chague modéle pour un stratifié composé de trois plis unidirectionnels empilés se-
lon la séquence [30/ — 30/30]. Les caractéristiques d’un pli sont présentées dans le ta-
bleau 2.1.

Le modeéle présenté permet d'implémenter cette théorie classique, le choix des warping
functions est alors fait de maniére a ce que le champ de déplacements décrit dans I'équa-
tion @) corresponde a celui de I'équation ("4, d’ou

Gap = Sag (2.34)
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FIGURE 2.2 — Warping functions ¢, et ¢, pour le modéle de Mindlin-Reissner pour un
stratifié compris entre —h/2 et h/2 avec z° = 0.

Le modele décrit par Reddy [Reddy1984 ] n’est pas habituellement décrit au moyen
de warping functions. Toutefois cette formulation, désormais classique, revient a I'appli-
cation des conditions de I'équation ®29) traduit par un polynéme qui en plus respectera
les conditions de I'équation 229, En supposant que le stratifié est compris entre —h/2 et
h/2, le polynbme est alors :

_ 5K 5_‘_‘(5)3 o
90(1,6'—5&'3(}1 3\7 ( 35)

Le modéle de Woodcock [woodcock_generalized_1995 ] est basé sur les hypothéses
initiales du modéle de Sun & Whitney [Sun1973 ]. Celui-ci formule les énergies poten-
tielle et cinétique au moyen de coefficients faisant intervenir les raideurs, les masses
volumiques, ainsi que les hauteurs des couches. Le modeéle écrit par Woodcock est géné-
ralisé au cas des plis hors axes [woodcock_free_2008 ], mais ne décrit pas explicitement
le champ de déplacements. Il a été reformulé par Loredo [Loredo2011 ] en explicitant le
champ de déplacement avec des warping functions. Le lien entre la présente formulation
et la formulation originale de Woodcock est décrit dans I'annexe A.

Ce modele est basé sur des hypotheses de continuité de déplacements et de contraintes
a chaque interface (équations 37) et (2:36))_ e résultat de I'application de ces conditions
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FIGURE 2.3 — Warping functions ¢, et ¢1» pour le modele de Reddy pour un stratifié
compris entre —h/2 et h/2 avec 2° = 0.

implique que le champ de déplacement de chaque couche ¢ € [2..n] est lié a celui de
la couche de référence. Le modele décrit le cisaillement transverse avec une variation
linéaire par morceaux suivant z, les déformations de cisaillement transverse a l'intérieur
d’'une couche sont constantes. Les ¢.s(z) sont alors des fonctions linéaires a l'intérieur
de chaque couche dont la continuité est assurée aux interfaces entre les couches.

Avec ces hypothéses, le déplacement transverse w et les déformations de cisaillement
transverse yf;3 sont constants suivant z a 'intérieur de chaque couche. Ces conditions se
traduisent donc par :

— la continuité des déplacements

ub(x,y, 2+ /2 = ul ey, 2 = 0 2) (2.36)

3

— la continuité des contraintes de cisaillement transverse
4 £+1
Ty =00k (2.37)

Les équations (36) et (237) permettent donc de lier le champ de déplacements de la
couche (¢ + 1) avec celui de la couche ¢, et, récursivement, au champ de déplacements
de la premiére couche, en suivant le procédé détaillé dans la référence [Guyader1978 ].

La seule condition de continuité des contraintes de cisaillement transverse permet de
formuler les go'aﬁ comme un rapport des rigidités de cisaillement transverse entre le plan
de référence et les autres couches :

QD;ﬁ(Z) =4S 13y3(2)Cy353(0)d6p = 4S 03y3(2)Cy3p3(0) (2.38)
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FIGURE 2.4 — Warping functions ¢, et ¢1» pour le modele de Sun et Whitney pour un
stratifié compris entre —h/2 et h/2 avec z° = 0.

Les warping functions peuvent donc s’écrire :

‘paﬁ(z) = 4Cy3ﬁ3(0) fo Sa373(£)d{ (239)

Les go;ﬁ peuvent étre composés d’'une série de polyndmes du second ordre pour chaque
couche respectant des conditions des équations (3-30), (2:33) gt (2.3),

Les conditions a respecter sont au nombre de 4n + 8 ou n est le nombre de couches. |l
est nécessaire d’avoir pour chaque go;ﬁ, n polyndmes d’ordre 2 soit 4 x n x 3 coefficients
de la forme .

Pop = g + bygz + lp2? (2.40)

avec avec i € [1,n]. Afin d’équilibrer le nombre de conditions et d'inconnues, on choisit
de mettre en commun pour toutes les couches deux des trois coefficients ce qui réduit
le nombre de coefficients a 4n + 8. Plusieurs auteurs ont proposé ce type de formula-
tion parmi lesquels on peut citer Kim [kim_enhanced_2006 ], qui présente des warping
functions comme un modeéle zig-zag auquel on vient superposer une variation cubique
globale afin de respecter les conditions de continuité statiques et géométriques. Les po-
lynédmes sont alors de la forme :

Oop = Gh + Dap? + Cap?’ (2.41)

On peut également citer I'article de Pai [Pai1995 ], qui lui propose une méthode relative-
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FIGURE 2.5 — Warping functions ¢, et ¢, pour le modéle de Kim pour un stratifié compris
entre —h/2 et h/2 avec ¥ = 0.

ment proche, les ¢,z sont de la forme
tpaﬁi = cflﬁ + dflﬁz + afyﬁzz + bfwz3 (2.42)

et il pose les conditions suivantes :

e,(x,y,00=0 (2.43a)
£93(x,y,0) =0 (2.43b)
Wy (X, Zis1) — Uy (6,3, 2i01) = 0 (2.43c)
(X, Y, Zis1) — s (X, 3,2i41) = O (2.43d)
o (6, 2i1) — 0 (Y, 2i41) = 0 (2.43e)
o (%, Y, zie1) = 05 (X, v, 2i1) = 0 (2.43f)
&5 (x,y,2) =0 (2.43g)
&hy(x,3, 2" =0 (2.43h)
(2.43i)
avec pour la couche de référence, notée J,
clp=dl,=dj =0,d{, =dj, =1 (2.44)
etpouri=1...J-1,J+1...n
Caz = Cél = dliz = dél = alil = déz =0, d{1 = déz =1 (2.45)

Cette méthode différe de celle de Kim par le choix arbitraire de certains coefficients
(équations (44) et (249))
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FIGURE 2.6 — Warping functions ¢, et 1, pour le modéle de Pai pour un stratifié compris
entre —h/2 et h/2 avec ¥ = 0.

On peut construire des warping functions a partir des contraintes de cisaillement issues
d’une solution analytique. Nous nous intéresserons a une solution analytique pour une
plaque rectangulaire simplement appuyée sous un chargement bisinusoidal. La méthode
de discrétisation employée est celle de Navier, présentée en détails dans la section 3.2.
Pour ce cas, les déplacements sont de la forme :

up ul™ cos(éx) sin(y) +uy"  sin(éx)  cos(ny)
Uy uy™  sin(éx) cos(ny) +iy"  cos(éx) sin(ny)
w =1 W™ sin(éx) sin(ny) +w"™ cos(éx) cos(ny) (2.46)
Y13 Yy cos(éx) sin(ny) +Y3  sin(€x)  cos(ny)
Y23 Yoy sin(éx) cos(ny) +Yp3 cos(éx) sin(ny)
avec
mm nm
E=—andn=—
a b

Chaque déplacement est exprimé comme la somme de deux fonctions trigonométriques
complémentaires dont les amplitudes sont notées ()™ et ()" pour la déformée du mode
(m, n). Pour le cas statique, on choisiram =n = 1.

D’aprés I'équation %) on voit que les (p;ﬁ sont directement liés aux o3 ; il est donc
possible de proposer des ‘,o;ﬁ a partir des résultats de I'élasticité tridimensionnelle. Pour
cela il est nécessaire définir les ‘I’;ﬁ de fagon a ce que,

Ta3(2) = V()0 (2.47)
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Il est, par ailleurs, possible d’écrire la relation suivante,
Ta3(2) = Capap3(2) = Carpy()95, (D93 = 4Ca3p3(20, (DS 353(0)0%; (2.48)
d’ou, en identifiant les deux équations précédentes,
W,5(2) = 4Ca353(2)5,(2)S y353(0) (2.49)
puis,

(2 = 45 4363(2) P (2)Cy33(0) (2.50)

Les quatre fonctions ‘I’;ﬁ sont obtenues a partir des contraintes de cisaillement trans-
verse calculées en deux points A et B distincts de la plaque (voir figure 2.7). Puisque les
déplacements de la plaque sont de la forme (249) | les o3 s’écrivent :

0'(1)3 = s13 cos(€x) sin(r7y) + 513 sin(€x) cos(n7y) (2.51a)
{033 = 523 sin(£x) cos(ny) + 523 cos(£x) sin(ry) (2.51b)
Lévaluation des s13, 513, 523 et 523 est donc faite aux points A et B, illustrés sur la figure 2.7.
Ona:
— aupointA, x=a/2ety=0,0% =53 et o), = 523
— aupoint B, x=0ety=>5/2, 00, = s13 6t 09, = 523

Remplacer ces valeurs locales dans la formule #7) permet d’obtenir le systéme suivant :

s1i3 00 53 O Y o13(B)

0 s23 0 13 ‘I’:zz _ Jo2s(4) (2.52)
si3 0 s3 0|V, o13(A)

0 S5 0 si3f|¥, 023(B)

Les ‘I‘;’B(z) sont alors obtenus a partir de la résolution de ce systeme; les go;ﬁ(z) sont
ensuite obtenus en utilisant 'équation =) et en intégrant les ¢, ,(z), avec une constante
d’intégration choisie de fagon a ce que ¢.z(0) = 0, ce qui permet d’obtenir les warping
functions ¢.p(z). Cette méthode permet donc d'établir les warping functions a partir des
contraintes de cisaillement d’une plaque soumise a un état de déformation particulier.

Les o,3(z) peuvent étre obtenues de maniére exacte a partir de solutions analytiques tri-
dimensionnelles (ce qui correspond au cas décrit ci-dessus). D’autre part, il est possible
d’obtenir les contraintes de cisaillement transverse au travers de l'intégration des équa-
tions d’équilibre de la mécanique dans un solide et d’obtenir un jeu de warping functions
a partir de ces équations.

En négligeant les forces volumiques, Les équations d’équilibre de la mécanique dans un
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FIGURE 2.7 — Etat déformé de la plaque représentant les points d’évaluation de
contraintes de cisaillement transverse.

solide, s’écrivent :

{a-arﬁ,ﬁ + 033 = Pilg (2533)

Oa3a T 0333 = pil3 (2.53b)

Les contraintes de cisaillement transverse, pour le cas statique, s’écrivent donc :

"z
0a3(2) = f Tapp(2)dz (2.54a)
—h/2
74
= j: " Qupys(2) (€95 55, 3) = 200,552, 3) + 0y (2703 555 3) ) dz (2.54b)

En réutilisant les warping functions ainsi obtenues et en répétant ce principe, il est alors
possible d'implémenter un algorithme itératif convergeant vers un nouveau jeu de warping
functions. Lalgorithme 1 peut donc étre implémenté, sans garantie de convergence, dans
le but d’obtenir le résultat pour un cas de chargement statique ou dynamique d’un stratifié
quelconque.

Ces deux derniéres méthodes d’obtention des jeux de warping functions sont liées aux
lois de I'élasticité tridimensionnelle. Bien que les résultats des calculs obtenus avec ces
jeux de warping functions se basent sur les hypothéses posées par le champ de dépla-
cements de I'équation '), on peut supposer que les résultats obtenus avec ce dernier
type de warping functions seront de meilleure qualité.

Les résultats numériques associés aux différents jeux de warping functions présentés
dans ce chapitre sont donnés dans la section 4.1 ou la méthode de Navier est utilisée
pour comparer les différents modéles et valider le modele générique.
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Algorithme 1 : Algorithme itératif d’'obtention des warping functions.

Etape 1 : initialisation;

Générer les warping functions du modele HSDT;

Calculer la matrice de rigidité correspondante;

Résoudre le probleme statique pour le modele HSDT;

Assigner la fléche obtenue a la variable w';

Obtenir erreur! = tolerance eti = 1;

Etape 2 : itérations;

tant que |erreurri| >= tolerance faire

Calculer les contraintes de cisaillement transverse en utilisant les équations
d’équilibre;

Calculer les nouvelles warping functions;

Calculer la matrice de rigidité correspondante;

Résoudre le probléme statique;

Assigner la fléche a la variable w*!;

i+1

—-w.
with 3

erreur! = 2

i=i+1;




De maniére générale, un couple modéle-méthode de discrétisation est adapté a la ré-
solution d’'un probléme donné et produit une solution unique. Par probléeme, on entend
'ensemble des parameétres caractéristiques d’'une simulation (type de plaque, conditions
aux limites choisies, excitation) que I'on souhaite réaliser. Un modéle de plaque, est gé-
néralement caractérisé par une matrice de comportement, des équations d’équilibre ou
encore I'expression de I'énergie potentielle de déformation ou cinétique. Pour un pro-
bléme donné, le choix d’'une méthode de discrétisation est donc souvent rattaché au
modeéle mécanique, et est aussi établi en fonction de la structure a modéliser, du cas
de chargement et des conditions aux limites. Par ailleurs, la plupart des modéles mé-
caniques peuvent étre implémentés avec plusieurs méthodes de discrétisation. En effet,
les modeles classiques de la mécanique ainsi que le modéle générique présenté dans
le chapitre 2, et de maniére plus générale les formulations variationnelles sont pour la
plupart résolvables avec la méthode de Rayleigh-Ritz et la méthode des éléments finis.
Il conviendra cependant de choisir une méthode de discrétisation adaptée au modele. |l
est par exemple nécessaire de s’assurer que le degré de continuité des fonctions d’inter-
polation est adapté dans le cas de la méthode des éléments finis. Il en va de méme pour
le choix de la base de projection dans le cas de la méthode de Rayleigh-Ritz.

Nous décrivons dans ce chapitre trois méthodes de discrétisation différentes adaptées
au modele de plagque présenté dans la chapitre 2, chacune étant associée a un cas test
donné. Nous présentons tout d’abord la méthode de Rayleigh-Ritz, puis, la méthode de
Navier qui est une adaptation de la méthode de Rayleigh-Ritz pour I'étude d’une plaque
simplement appuyée et enfin deux types d’éléments finis adaptés a notre modele.

La méthode de Rayleigh-Ritz pour I'étude de plaques en vibration, telle que présentée
dans la thése de Plessy [plessy_comportement_2009 ], est pour I'occasion adaptée a
la simulation de plaques munies de dispositifs amortissants passifs. En effet, les défor-
mées modales d’une plaque sont souvent relativement faciles a exprimer sur une base de
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projection bidimensionnelle lorsque celle-ci est correctement choisie. Un autre avantage
de la méthode est la facilité d’implémenter des modéles faisant intervenir des dérivées
d’ordres supérieurs lorsque la base de projection choisie est de forme trigonométrique.
La méthode est donc communément utilisée pour I'analyse des modes et fréquences
propres de structures, mais aussi pour étudier la réponse dynamique d’une plague (ou
d’une poutre) soumise a un chargement donné.

Du fait de la projection de tous les degrés de liberté sur une base, cette méthode de
discrétisation est adaptée a la simulation de la vibration de plaques rectangulaires sou-
mises a une excitation quelconque. Nous présentons la méthode au travers de I'étude
d’une plaque rectangulaire, bafflée, munie d’un ou plusieurs patchs viscocontraints sou-
mise a une excitation ponctuelle, a une onde plane incidente ou encore a un champ diffus.
La figure 3.1 illustre le cas étudié.

FIGURE 3.1 — Représentation d’'une plaque rectangulaire bafflée soumise a une onde
plane incidente d’angles 0 et ¢.

Le systeme est constitué d’'une plaque support et de un ou plusieurs patchs viscocon-
traints. La plaque support peut étre constituée d’'une ou plusieurs couches, et chaque
patch peut lui aussi étre constitué d’'une ou plusieurs couches de matériaux orthotro-
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piques dont les propriétés peuvent varier avec la fréquence. Le principe de superposi-
tion est utilisé pour obtenir les matrices de masse et de rigidité de la plaque patchée
comme illustré dans la figure 3.2. Lénergie cinétique totale E!* est composée de I'éner-
gie cinétiqueEkS de la plague de base sur la surface totale de la plaque S a laquelle on
soustrait I'énergie cinétique de la plaque de base sur la surface du patch S, ajoutée de
I'énergie cinétique de 'empilement composé de la plaque de base et du patch E,‘j sur la
surface du patch S .. Le méme principe est utilisé pour I'énergie de déformation E;. On re-
marque par ailleurs qu’il est possible d’apposer des patchs de chaque cété de la plaque.
La figure 3.3 illustre les différentes variables mises en jeu pour décrire la géométrie de

;T T T T / T T T T /
/ / / /
= - I+ /
/ / / /
/ / / /

Et°t, Bt = E§, Eisur S — Ej, ESsur Sc + E¢, E¢sur S

FIGURE 3.2 — Principe de superposition pour la plaque support et un patch viscocontraint.

Y
I3
Lp ap Yp
r
0 . X

FIGURE 3.3 — Parametre géométriques de la plaque support et des patchs viscocon-
traints.

la structure avec pour la plaque support :

— ay la longueur de la plaque

— by la largeur de la plagque

— les T'; représentent les bords de la plaque sur lesquels on applique les conditions aux
limites.

Et pour le patch :
— a, la longueur du patch
— b, lalargeur du patch
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— les T; sont les bords de la plague devant recevoir les conditions aux limites

Chaque couche peut étre constituée d’'un matériau orthotrope orienté dans lo plan
(0, X,Y) avec un angle quelconque.

Dans ce type de probleme, les bases utilisées sont la plupart du temps de type polyno-
mial, trigonométrique ou exponentiel. Le choix de la base est généralement conditionné
par les conditions aux limites imposées a la plaque, afin que le champ de déplacement
associé soit cinématiguement admissible. Ce choix a aussi son importance pour le com-
portement dynamique de la plaque. Lorsque les formes des fonctions de la base se rap-
prochent des déformées modales de la plaque, I'ordre nécessaire pour décrire la réponse
de la plaque est alors moins élevé. Un choix judicieux de la base est donc essentiel et
permet de réaliser des calculs dont la taille du systeme a résoudre est alors réduite.

Le modéle de plaque présenté dans le chapitre 2 nécessite la manipulation de dérivées
secondes de la fleche w (présentes dans I'équation d’équilibre (3-28)). Lemploi d’'une base
trigonométrique, permettant de dériver chaque fonction plusieurs fois sans difficulté, est
donc particulierement adapté a la résolution de ce probleme. Dans certains cas, les bases
trigonométriques peuvent présenter I'avantage d’étre orthogonales, c’est a dire que leurs
éléments sont orthogonaux deux a deux. Lorsque I'on souhaite avoir de la souplesse
pour imposer des conditions aux limites variées, il est intéressant de pouvoir disposer
d’'une unique base qui permette de traiter tous les cas. Le choix de la base de projec-
tion {¢!,,(x,y)} est donc un élément essentiel de la méthode de Rayleigh-Ritz. La base
présentée par Plessy [plessy_comportement_2009 ] est la suivante :
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avec

pourr=1,m=1etn=1
pourr=2,m=1etn=2
pourr=3, m=1etn=3

pourr=N,m=1etn=N

pourr=N+1,m=2etn=1

pourr=MxN,m=Metn=N

Bien qu’ayant pour avantage de permettre d’'imposer une grande variété de conditions
aux limites, cette base est non orthogonale et impose donc I'utilisation de la matrice du
tenseur métrique pour certaines opérations. De plus, il s’est avéré qu’elle induisait des
problémes de conditionnement des matrices de rigidité et de masse. Enfin, elle néces-
site I'ajout de raideurs artificielles afin de simuler les conditions aux limites souhaitées,
raideurs en I'absence desquelles on a une condition libre.

Afin de parer a ces inconvénients, une base présentée par Bes-
lin [beslin_hierarchical_1997 ] a été choisie puis implémentée. Celle ci est définie
comme suit :

{#"(x)) = { sin (a,,,ZLx:ﬁm) sin (y,,,zzcjam )} (3.2)

et
" ()} = {¢" ()" )} (3.3)

ou les coefficients a,,, B, vm €t 6,, sont donnés dans le tableau 3.1, La base étant bi-
dimensionnelle, la correspondance entre l'indice r et les indices m et n est identique a
celle de Plessy. Les coefficients a,, 8., v» et 6, sont identiques aux a,;, B, Ym €t - EN
observant les fonctions 1 a 4 de la base de projection présentées dans la figure 3.4, il est
possible d’en déduire les combinaisons de fonctions permettant d'imposer les conditions
aux limites les plus classiques. Ainsi le tableau 3.2 présente le jeu de fonctions de la base
a associer a chaque degré de liberté pour respecter diverses conditions aux limites. Ce
tableau permet de faire un choix de fonctions de la base pour une direction de I'espace.
Pour le cas bidimensionnel, le méme tableau est utilisé et la base est composée a l'aide
de I'équation 33). Cette base s’est avérée ne pas présenter de probléme de condition-
nement lorsque I'ordre augmente, et permet d’éviter I'implémentation de rigidité fictives
ayant pour but de simuler les conditions aux limites. Toutefois, elle n’est pas orthogonale,
I'utilisation de la matrice du tenseur métrique est donc nécessaire pour certaines opéra-
tions. Par ailleurs, I'étude de Beslin [beslin_hierarchical_1997 ] montre que cette base
est particulierement adaptée aux plaques en vibration pour les déformées des modes
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TABLE 3.1 — Coefficients intervenant dans les termes de la base présentée par Beslin.

uy u w Y13 ¥23

Encastré-Encastré

Encastré-Libre }3, P4 $3, P4 $3, P4 }3, P4 }3, P4
Encastré-Appuyé | ¢3,¢4 }3, P4 P4 }3, ¢4 }3, P4
Encastré-Guidé @3, P4 @3, P4 &3 &3, P b3, P4
Libre-Encastré b1, b2 P1. 42 b1, 2 b1, b2 b1, 2
Libre-Libre G102, 83, P4 | D1,P2, 03, P4 | D1, P2, D3, 4 | 1,2, 3,04 | b1, D2, D3, Pa
Libre-Appuyé G1,$2, 33,4 | $1,02, 3,04 | 2,03, P4 P1. 02, 03,04 | 1,02, 03, ¢4
Libre-Guidé G102, 3,94 | $1.¢2, 83,94 | P1. 02,3 P12, B3, b4 | D1, 2, B3, s
Appuyé-Encastré | ¢1, 4> b1, 92 ) b1, 02 b1, 2
Appuyé-Libre 1,02, 83,04 | D1, P2, 3,04 | D2, P3, Pa 1,02, 83, 04 | 1,02, $3, ¢4
Appuyé-Appuyé D1, P2, D3, 04 | 1,02, 03,04 | P2, ¢4 G1,$2, 3,04 | $1,02, 03, ¢4
Appuyé-Guide G1.02, 03,04 | 1.2, 03,04 | b2, 3 P1. 02, 03,04 | 1,02, 03, ¢4
Guidé-Encastré &1, P2 1,2 o1 o1, o1, >
Guidé-Libre 1,02, 3,04 | O1, 02, $3, 04 | 1,93, Pa &1, 902,83, 04 | 1,02, $3, ¢4
Guidé-Appuyé 1,02, 83,04 | O1, 02, 3,04 | b1, P4 1, 02,93, 04 | &1, P2, P3, ¢4
Guide-Guide 1,02, 03,04 | d1,02, 03,04 | 1,03 61,02, 03,04 | d1,02,$3, ¢4

TABLE 3.2 — Jeu de fonctions de la base associé pour chaque degré de liberté nécessaire
au respect de la condition aux limites.
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B i o1()

! — a(a)

— ¢3(x)

pa(z)
0.5 - -
0 |
_05 - |

| | | | |
-06 —-04 —-02 0 0.2 0.4 0.6

T

FIGURE 3.4 — Quatre premieres fonctions de la base de Beslin permettant de s’adapter
aux conditions aux limites.

| || ¢s5(@)

! —— o)

— ¢7(z)

0.5 F | #s(z)
0 N
—0.5 N
1k |

| | |

! !
-06 —-04 0.2 0 0.2 0.4 0.6
T

FIGURE 3.5 — Fonctions 5 a 8 de la base de Beslin.

d’ordre supérieur.

La méthode de Rayleigh-Ritz est une méthode variationnelle directe dans laquelle on
recherche le minimum d’une fonctionnelle d’énergie F définie dans un sous-espace. On
considére I'expression

1 (@) = f fs F((® (o)) ds (3.4)
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Lobjectif est donc de minimiser cette intégrale. Les variable étant projetées sur une base
finie de fonctions, la solution est de la forme

N
O (x,y) = ) apdu(x,) (3.5)
n=1
ou les ¢, respectent des conditions aux limites homogénes. Les a, sont les coefficients
de la base et {®*} est une solution approchée de la solution exacte {®}. En remplacant
I'équation @5 dans I'équation @) et en exprimant I'intégrale I({®}) comme une fonction
de N coefficients ay, ay, ..., ay, on peut écrire :

(@) = (a1, a2,...,aN) (3.6)

Le minimum de la fonction I est obtenu lorsque toutes ses dérivées partielles par rapport
a chaque coefficient sont nulles :

!
=0pourn=1,2,..,N (3.7)
oay,

Dans notre cas, nous appellerons {X} le vecteur de la solution approchée {®*}.

Nous obtenons donc un jeu de N équations permettant d’obtenir la solution du systéme.
Pour notre systéme mécanique, la fonctionnelle est composée de la fagon suivante

ffs (L+ W,)dS (3.8)
ffs (T =V +W,)dS (3.9)

(3.10)

1({X})

avec le lagrangien L = T —V et ou T et V sont respectivement I'énergie cinétique et
I'énergie potentielle totale. W; représente le travail total des forces extérieures. Lénergie
potentielle totale, composée de la somme de I'énergie potentielle interne de déformation
et de I'énergie potentielle des forces de liaison, s’écrit

h
ff vds = lff fz oij (x,y,2) &ij(x,y,2)dzdS +ferdF (3.11)
s 2 JJs -4 r

avec o le tenseur des contraintes, ¢ le tenseur des déformations et frerdl" I'énergie em-
maganisées au travers des conditions aux limites.

De méme, T I'énergie cinétique s’écrit :
h
2

ff TdS = %fff p(x,y,2) W (x,y, 2% + 1y (x,y, 27+ w(x,y, 2)»)dzds (3.12)
s s J-4

avec p la masse volumique, u;, uy, w les déplacement des points de la plaque. Puis, dans
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le but d’obtenir I'extremum de la fonctionnelle d’énergie, solution de I'équation 3.7, nous
utilisons les équations de Lagrange :

d(oL\ oL _

E(a_xj)_ - (3.13)

avec L le Lagrangien défini par : L = T -V et les X; les composantes du vecteur des
coefficients d’approximation de Ritz d’ordre j en sachant que

ui (1)
u (1)
mo) WO
(1) Yy ()
(X} ={win} =47 O (3.14)
ro| |w®
Yy(0) :
Yy (1)

et que puisque nous sommes en régime harmonique les déplacement sont de la forme
ui(t) = urel; ..., () = y;’,’”e/“”. Puisque I'énergie cinétigue ne dépend pas des coef-
ficients {X"(¢)} et puisque I'énergie potentielle ne dépend pas des coefficients {Xj} les
équations de Lagrange peuvent s’écrire :

d( ar oV
= =0 3.15
dr (a{xj(r)}) " a{x,(n} (815

Il est alors possible de réécrire I'expression de I'énergie cinétique T sous forme matricielle
en fonction d’'une matrice de masse [M],

1.7 .
T =5 {x}" v {x} (3.16)
et de méme pour I'énergie potentielle V en fonction de la matrice de rigidité [K] :

V() = - (X} [K]{X} (3.17)

N =

En introduisant les équations 318 et 3-17) dans I'’équation @19, celle-ci devient :
(o’ [M] + [K]) {X} = 0 (3.18)

Il est par ailleurs possible de réécrire le systéme sous sa forme complexe a l'aide de
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matrices d'impédance associées aux matrices [f{] et [1\7[] :

(-’ [M]+[K){X} =0 (3.19)
(- (IM] + jo [Cm]) + (K] + jw [CkD) {X} =0 (3.20)
(- IM] + jo (ICk] - @ [Cu]) + [K]){X} =0 (3.21)

La recherche des valeurs propres du systéme conservatif associé se fait en cherchant
les valeurs de w pour lesquelles le déterminant de la matrice du systéme (—w? [1\7[] +
[f(]) est nul. Dans le cas des matrices d'impédance complexes, il convient de réécrire
le systéme avec une matrice d’amortissement [C]. Léquation du systéme libre 321 peut
alors s’écrire :

[M]{X} + [C]{X] + [K]{X} = {0} (3.22)

Le systéme peut alors étre augmenté a I'aide de I'identité suivante :
[M] {X} - M]{X} = {0} (3.23)
A raide des équations @22 et 3-23) nous pouvons réécrire un systéme de taille 2N
[A]{y} + [B]{y} = {0} (3.24)

avec

0] M -[M] [0
[A]:[[] [ ]} [B]:{ [M] []l
(Ml [C] (0] (K]

o) s
v} —{ ) } i} { ) }

La solution de I'équation (324) permet d’obtenir les valeurs des fréquences propres (com-
plexes) ainsi que les vecteurs des modes propres (complexes).

Compte tenu de I'approche bidimensionnelle utilisée, les sollicitations extérieures sont
toujours considérées normales au plan de référence choisi et sont ramenées a celui ci.
Le travail d0 aux forces extérieures inclut a la fois les forces d’excitation et la pression
exercée par la charge du fluide sur la plague. Le travail des forces extérieures F(x,y,1)
sur un cycle de chargement s’exprime alors :

Wr = ff F(x,y,hW(x,y,)dS (3.25)
s
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avec W(x,y, 1) la fleche au plan moyen intégrée sur une période ¢ et la surface de plaque
S. Léquation du mouvement de la structure est ensuite obtenue a I'aide de I'équation de
Lagrange.

d(aT) V. IWr (3.26)

dr\ax,) " ax; = ax;
On remarque que les effets du fluide du milieu environnant sont négligés dans cette for-
mulation, ceci revient a poser comme hypothése que les fluides environnant sont consi-
dérés comme des fluides légers (comme par exemple I'air), et que ceux-ci n’interagissent
pas avec la plaque.

Pour une sollicitation mécanique par une force ponctuelle F(r) appliquée au point (x,,y,)
perpendiculairement a la plaque, I'expression du travail W, de cette force s’exprime par :

W, = fj; F()o(x — x,)0(y = yp)W(x,y, ydS (3.27)
Wp = F(I)W(-x’ y’ t) (328)

A I'aide de I'équation (-28) pour un régime harmonique, nous obtenons donc le systéme
suivant :
(- [M] +[K]){X} = {F] (3.29)

avec e
{F} = j; fo Fo(x = xp)d(y = yp) {¢(x, y)} dydx (3.30)

La plaque étudiée séparant deux milieux fluides semi-infinis, les forces dues a une onde
plane progressive sont dues a une différence de pression entre les deux milieux avec
p1(x,y,z = 0,1) la pression dans le milieu 1 et pa(x,y,z = 0,1) la pression dans le milieu 2.
La différence de pression s’exprime alors comme la différence des pression rayonnées
par la plaque entre les deux milieux p|™ — p¥ augmentée de la pression incidente et de
la pression réfléchie (égale a la pression incidente) :

pi1(x,y,2=0,1) = pa(x,y,2=0,1) = (3.31)
s\ . b\ .
prlay - p;ay + 2P exp (—jlq ((x - %) sin(6) cos(yp) + (y - 5) sin(6) cos(cp)))
Or, en gardant I'hypothése des fluides légers, pi(x,y,z = 0,1) et pa(x,y,z = 0,7) sont

bien inférieurs a la pression incidente, on peut alors choisir de négliger ces deux termes.
ki = w/c; est le nombre d’'onde du milieu excitateur et ¢; est la célérité du son dans ce
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méme milieu. Lexpression du travail de la force incidente résultante W,, s’écrit alors :

Wop = ff 2P;exp (—jk1 ((x - %) sin(0) cos(yp) + (y - %) sin(6) cos(go))) ds (3.32)
N

Le vecteur force correspondant s’écrit alors :

g bs bs\ -
(F) = 2P, f ¢ (= 3)sin@ o) (45, (1)) dx f e lb=3)sn@0) 14 ()} dy  (3.33)
0

0

avec ¢(x,y) = ¢* () ().

Il est essentiel d’avoir plusieurs indicateurs globaux du comportement vibratoire de la
plaque. Nous proposons ici plusieurs indicateurs couramment utilisés pour évaluer le
comportement vibroacoustique d’une structure.

La vitesse quadratique moyenne est un bon indicateur du niveau d’excitation mécanique
global de la plaque. Celle-ci permet de visualiser au travers d’un seul indicateur le com-
portement global de la structure. Elle est définie comme la vitesse moyenne sur une
période et sur la surface de la plaque.

<V2>—Llfoasfbsl‘dW(x,y,t)
_asbsT 0 Jo 0o 2 dr

En régime harmonique, I'équation @34 devient :

2
dydxdr (3.34)

2

V2 =
Vo 2a:by

as b
f W (x,y,w) W (x,y,w)* dydx (3.35)
0 0

Le symbole x indique la valeur complexe conjuguée. La vitesse quadratique peut étre
réécrite en fonction du vecteur {f(} issu de la résolution de I'équation (3-29) :

2 wZ T “ b r r Tx S *
V)= 52 (%) [ [ [ e ) dydx] (%) (3.36)

On remarque au passage qu’il est possible d’identifier la matrice du tenseur métrique [T]
& partir de I'équation (3-36) :

s by
IT] = f: fo (8o} (B e, )™ dydx (3.37)
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Il est possible d'utiliser plusieurs indicateurs acoustiques afin d’étudier les effets
des patchs viscocontraints. Les deux principaux indicateurs utilisés sont la puis-
sance acoustique rayonnée et la transparence acoustique. Les formules de ces
deux indicateurs sont données pour la méthode de Rayleigh-Ritz dans la thése de
Plessy [plessy_comportement_2009 ]. Celles -ci peuvent étre directement utilisées
avec notre base de projection.

La méthode de Navier permet de réaliser des calculs sur un stratifié pour une plaque rec-
tangulaire simplement appuyée dans un cas de chargement particulier. Dans sa version
classique, telle que présentée dans la section 1.5, la méthode est limitée aux stratifiés
dont les axes d’orthotropie sont confondus avec le repére de la plague. Nous proposons
ici une variation de la méthode permettant le calcul d’un stratifié quelconque. Cette mé-
thode de discrétisation a pour avantage de ne pas avoir une précision relative a une
densité de maillage ou un ordre maximal de la base. On peut donc considérer cette mé-
thode comme exacte, la qualité des résultats est alors uniguement dépendante du mo-
dele. Cette méthode, proche de celles utilisées pour les solutions exactes décrites dans
la section 1.4.1, est couramment utilisée dans la littérature afin de comparer différents
modéles.

La méthode de Navier telle que classiquement utilisée dans la littéra-
ture [kant_analytical_2001, carrera_unified_2005, jam_new_2010 ], est réservée
aux stratifiés orthotropes dont les axes d’orthotropie sont confondus avec le repéere de la
plaque, ou pour des stratifiés avec une séquence d’empilement antisymmeétrique, pour
une plaque simplement appuyée. Dans ce cas, on suppose que lorsque le chargement
appliqué est de la forme sin (Z*)sin (%), la déformée de la plaque est de la méme forme.

Nous proposons ici une généralisation de cette méthode permettant I'étude de stratifiés
orthotropes quelconques simplement appuyés.
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Le champ de déplacement associé est :

u W™ cos(éx) sin(py) +u|"  sin(éx)  cos(ny)
u uy™ sin(éx)  cos(my) +uy"  cos(€x)  sin(ny)
w =1 W™ sin(éx) sin(y) +w™ cos(éx) cos(ny) (3.38)
Y13 Yia  cos(éx) sin(py) +yy3  sin(éx) cos(ny)
Y23 Yoy sin(éx) cos(ny) +yy3  cos(€x) sin(yy)
avec
&= 7 and n= o
a b

oum = 1etn = 1 pour une analyse statique, ou arbitrairement choisis pour I'étude
dynamique du mode (m, n).

Le chargement est de la forme :
q(x,y) = qo sin(£x) sin(n7y) + gq cos(&x) cos(ny) (3.39)

Pour un m et un n donné, les équations d’équilibre du modéle 28 donnent une ma-
trice de rigidité et une matrice de masse, respectivement [K] et [M], liées au vecteur
{U} = {u1,u2...7,3,¥23). Le cas statique est traité en résolvant le systeme [K]{U} = {F},
ou {F} est un vecteur force unitaire contenant ;" sur sa troisieme composante. On choi-
sira gg" = 1. Résoudre le probleme dynamique consiste a faire une recherche de valeurs
propres généralisées sur les matrices [K] et [M]. Dans le cas ou les axes d’orthotro-
pie du stratifié sont confondus avec le repére de la plaque ou si le stratifié posséde une
séquence d’empilement de ses plis antisymétrique, alors w respecte les conditions sim-
plement appuyée, i. e. w,,, = 0. Pour le cas le plus général, la réponse de la plaque sous
une chargement bi-sinusoidal donne w,,, # 0. Puisque I'on choisi de respecter les condi-
tions aux limites simplement appuyées, le terme w,,, peut étre annulé si un chargement
de forme bi-cosinusoidal, d’amplitude g;" est ajouté. Lamplitude de g;" est obtenue en
utilisant un multiplicateur de Lagrange. La matrice du systéme est alors de taille 11.

K|C|(U F
={— (3.40)
o || g 0

avec {C} un vecteur possédant un 1 sur sa huitieme composante. Pour le cas dynamique,
la matrice de masse [M] est augmentée d’'une ligne et d’'une colonne de zéros pour
devenir une matrice de taille 11 x 11. Le détail des matrices [K] et [M] est donné dans
'annexe B. On remarque aussi qu’il est possible de garder un chargement de la forme
q = q3" sin(éx) sin(ny), alors, dans ce cas, les conditions aux limites simplement appuyées
ne sont plus respectées pour le cas le plus général.
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La méthode des éléments finis est une méthode de discrétisation devenue de nos jours
incontournable. Elle a en effet pour avantage de présenter une certaine flexibilité pour
I'étude des structures de géométries complexes proches de cas réels de conception.
D’un point de vue général, le but est de résoudre numériquement des équations aux
dérivées partielles. La méthode est, tout comme la méthode de Rayleigh-Ritz présentée
dans la section 3.1, une méthode variationnelle qui cherche a minimiser une énergie (ou
selon les approches un résidu) et a produire une solution stable. La qualité de la solution
est en grande partie fonction de 'adéquation de l'interpolation aux variations des champs
du probléme étudié. Par conséquent, la précision de la méthode est directement liée au
maillage utilisé et aux fonctions d’interpolation choisies.

Notre modéle faisant intervenir une formulation incorporant des dérivées secondes, les
éléments finis de plaque classiques ne sont pas adaptés a notre modele. Nous propo-
sons ici trois éléments finis de plaques, issus de la littérature, adaptés a I'étude de notre
modéle. Le premier présente une écriture de la formulation avec sept degrés de liberté,
cependant soumise au verrouillage en cisaillement des plaques, les deux autres sont des
éléments a continuité CI1.

Nous présentons ici plusieurs points essentiels de la méthode des éléments finis adaptée
au modele générique décrit dans la section 2. D’'un point de vue général, le but est de
satisfaire les équations d’équilibre ?28), Lensemble des éléments et méthodes présentés
dans cette section a été implémenté a I'aide du logiciel Matlab et a été validé par com-
paraison avec les résultats des autres codes et procédures a notre disposition. On définit
dans un premier temps, et ce pour tout élément :

— Le vecteur déplacement de I'élément {u}, c’est un vecteur qui regroupe les compo-
santes des déplacements de noeuds de I'élément. Dans le cas le plus simple, notre
modele ayant cing degrés de liberté par nceud, pour un élément classique a n nceuds,
le vecteur déplacement s’écrit :

fu} = {713 (3.41)

— Dans un élément, chaque variable correspond aux valeurs du champ de déplacements
aux noeuds. Des fonctions d’interpolation sont associées a chaque noeud. Pour un
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élément a n noeuds, une variable du champ de déplacements peut alors étre estimée
a l'intérieur d’'un élément avec la relation suivante :

n

uy (5,y) = Y uiNi(x,y) (3.42)

i=1

Il est alors possible d’écrire une matrice [/] organisée de la fagon suivante,

Ni(x,y) O 0 0 0 Nu(x,y) O 0 0 0

0 NGy 0 0 0 0 Nyu(x,y) 0 0 0

V] = 0 0 My 0 0 ... 0 0 Nyx,y) O 0

0 0 0 Ny O 0 0 0 Nu(x,y) O

0 0 0 0 N(x,y) 0 0 0 0  Nux,y)
(3.43)
ce qui permet d’établir le déplacement en tout point de maniere matricielle :

{u(x, )} = [N ()] {u) (3.44)

— Classiguement, les fonctions d’interpolation sont exprimées dans un repére local &, 7,
avec ¢ et np variant de —1 a 1. Afin de pouvoir exprimer les dérivées des fonctions de

forme 2 et ‘38—1; il faut alors utiliser la relation
ON; ON;
{ x }: [J]‘l{ o } (3.45)
ay o
avec [J] la matrice jacobienne définie de la fagon suivante :
ox 6} n (’)Ni n 6N,'
| % a || ZimaN Zio gV
m=| 5| Bl (3.4
an  on i=1 ap N 2ui=1 o Vi
[ X1 N ]
% e F o G
‘l oy N, ’i} Xi i (3:47)
e o an o
| Xn Yn |

— Le vecteur des déformations généralisées est obtenu a l'aide d’'une matrice [1B¢] com-
posée des dérivées des fonctions de forme sur x et sur y (le détail de cette matrice est
propre a chaque élément et est donné pour chaque type d’élément présenté).

{e} = [B*] {u} (3.48)
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Tout comme pour la méthode de Rayleigh-Ritz, il est possible de formuler la matrice de
rigidité a partir de I'énergie de déformation de I'élément. Celle-ci s’écrit :

1
Edef:_fo'ijgijdv (349)
2 Jv

:lf{a}T {s}dvzlfff (e}T [D]{e}dV (3.50)
2 Jy 2 JJJv

Il est alors possible de réécrire Eqer a 'aide de I'expression (348) ce qui donne,

1
oo = 5 " ([ 151 (P11 0V 351)

1
=3 f ()" K] {u} AV (3.52)

\%4
La matrice de rigidité s’écrit donc :
7] = [ 18" (D180 (3.53)
\%4

La matrice [D] est obtenue & partir des matrices de comportement de I'’équation ¢-21).
Les matrices de comportement prenant en compte I'épaisseur, il faut alors intégrer sur la
surface S de I'élément. Léquation 353 devient alors :

A B E 0
BT F 0

[K*] = f [(Be]" ET FT G o [B¢]dS (3.54)
0 0 H

Il est alors possible de décomposer I'écriture de [K*€] de la maniére suivante :

A B E

[K*] = [B]" (B D F|[B]+|B"|[H][B]|dS (3.55)
L= o

f Be [A][BS,] [B] 185" (BI" [B5 +

(8] mi[By] + [By] 1184 + [B al +

|85, 1F1[Bg) + 8] (FI [Bsd +[Bsd] [G]|B¢,| + B [H] [Bg])ds (3.56)
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A partir de I'équation de la densité d’énergie surfacique 24, il est alors possible de
former une matrice de masse en réécrivant I'énergie cinétique pour un élément

Ecin :% ( f [Be [=]|B] dS){ ) (3.57)
f f ] {u} dS (3.58)
avec
uj u w —-wp —Wwp Y13 Y23
wy [ R 0 0 S 0 Uy Upl|
U 0 R O 0 N Uyy Upxp
w 0 0 R 0 0 0 0
[El=-w, | S 0o 0 T 0 Vi1 Vi (3.59)
-wa| O S 0 0 T Vor Vo
yi3 [Un U O Vi Vo Wiy Wi
Y3 U Ux 0 Vo Vi Wy Wp|

De méme que la matrice [K*], il est alors possible d’exprimer la matrice masse [M¢] en
fonction d’une intégrale de surface :

[MF] = f fs [Be] 1=1[Bg]ds (3.60)

Afin de réaliser l'intégration sur la surface S de I'élément, la méthode de quadrature de
Gauss est utilisée. Pour cela, chaque variable est exprimée dans un élément de référence
non déformé dans un repére (¢,7) comme illustré pour un élément a neuf noeuds dans
la figure 3.6. Les bornes d’intégration dans I'élément de référence étant comprises entre
—1 et 1, I'intégration de(s) I'énergie(s) dans chaque élément dans ce repére se fait par la
méthode de la quadrature de Gauss. On écrit alors :

(%] = f f 18] [D1[B] ds (3.61)

[Be(xg)] [D]] B (x) | we det ([J(x)]) (3.62)
8=

ou [Be(xg)] représentent I'évaluation de la matrice B¢ aux coordonnées des points de
Gauss, w, les poids de Gauss correspondants et det([J(xg)]) le déterminant de la matrice
Jacobienne. Le nombre et la position des points de Gauss sont choisis en fonction du
degré des polyndmes des fonctions d’interpolation. On est parfois amené a I'adapter pour
tout ou partie des termes de I'énergie afin d’améliorer le comportement des éléments
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(techniques d’intégration réduite).

Nayak [nayak_higher_2005 ] propose un €lément a neuf nceuds isoparamétrique adapté
au modeéle de Reddy. Lécriture du modéle de Reddy dans les travaux de Nayak est simi-
laire & notre modéle générique. Nous proposons d’étendre, par analogie, la formulation
proposée par Nayak a notre modele générique.

Lélément est composé de sept degrés de liberté par nceud séparant ainsi les rotations
¢, des déformations de cisaillement y,3. Les déplacements s’écrivent donc en fonction
des fonctions d’interpolation de I'élément :

9 9 9 9
uy = ZN,M’I, up = ZNMIQ , W= ZN,W’ , Q1 = ZNI"PII ,
i=1 i=1 i=1 i=1

9 9 9
@2 = ZNM’Z » Y13 = ZNW'B » Y23 = ZN,-)/’23
i=1 i=1 i=1

Par ailleurs, on sait que
Pa =Ya3 ~Wa (3.63)
d’ou
—Wap = Pap — Ya3p (364)

Il est alors possible d’exprimer les vecteurs des déformations généralisées {e}, {x}, {I'} et
{y} de I'équation (320) en fonction des fonctions d’interpolation :

{e} = [Bn] {6} (3.65)
x} = [85] 16} (3.66)
) = [8]16) (3.67)
(v} = [B5]{6} (3.68)

Les matrices [B5,], [Bf)], [B;’d] et [B¢] relient les déformations généralisées aux degrés de
liberté associés a chague noeud. Ces matrices sont définies ainsi :

i

A (P

&l N, 0O 0 0 0 0 O
[Bul=g2 [+ 0 N, 0 0 0 0 0 (3.69)

&n N, NN\ 0 0 0 0 0
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S
Al 0 0 0 N, 0 N 0
Bl =—wa 0O 0 0 O Ni 0 Ni 3.70
b] =7 N
A 0 0 0 %le %le %le %le
wowy wogl 9 Yy Yy
V13,1 O 0 0 0 o Nfl 0‘
0 00 0 0 0 N
EA 2 (3.71)
Y132 00 0 0 0 N, 0
V23,1 O 0 0o O o0 o N,l1
wowy, wood 9 Yy v
.« 0 0O NN 0 0 0
821="" ! . (3.72)
V23 0 O N'2 0O N 0 0

Les fonctions d’interpolation habituellement associées a un élément isoparamétrique a
neuf nceuds sont définies dans I'équation (373) avec la numérotation associée de la fi-

gure 3.6.
Ni=iné(-1+ &) (-1+n)

Ny ==in(-1+6 A +&) (-1 +n)

N3 = né(1+ &) (-1 +n)

Ny==31+m A+ +8)

Ns = 1nE(1+&)(1+1n) (3.73)
No=—sn(-1+& A+ (1 +n)

N7 = né(-1+&€ 1 +1)

Ny =—3&(=1+m L +m(-1+&)
No=(-1+&A+H(=1+n(1+n)

Cette formulation est cependant soumise au verrouillage en cisaillement. C’est a dire

7 6 5
8 . 4
9
1 2 3

FIGURE 3.6 — Numérotation des noeuds de I'élément isoparamétrique a neuf nceuds.

que lorsque la plaque est fortement élancée, celle-ci se "verrouille" et les déplacements
de la solution sont alors quasi nuls. Selon Polit [polit_verrouillage_2007 ], les pro-
blémes de verrouillage apparaissent lorsque la convergence n’est pas indépendante
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de I'épaisseur de I'élément. Le phénomene apparait généralement lorsque la plaque
étudiée est fortement élancée. Une des méthodes classiques pour éviter ce phéno-
meéne est de sous interpoler le degré de liberté en cisaillement, c’est ce qui est pro-
posé par Nayak [nayak_higher_2005 ] en implémentant une procédure d’interpola-
tion mixte initialement proposée par Bathe [bathe_finite_1982, bathe_fournode_1985,
bathe_formulation_1986 ].

Bien que viable, le principal probléme de cette formulation est sa complexité de mise
en ceuvre. En effet, la procédure de Bathe nécessite I'implémentation d’'une méthode
d’interpolation difficile a mettre en ceuvre et est par conséquent, une solution que nous
n’avons pas réussi a valider pour la résolution de notre probléme.

Dans le but de permettre I'implémentation directe du modele, et en respectant I'équa-
tion d'équilibre @-280) il est nécessaire d’évaluer la dérivée seconde de la fléche w s
aux points de Gauss. Or, les éléments finis classiques, possedent des fonctions d’inter-
polation linéaires ou quadratiques, nécessitent la continuité des dérivées premiéres des
fonctions d’interpolation de I'élément. Pour cela, il faut utiliser des fonctions d’interpolation
a continuité C1. C’est a dire que les fonctions sont continues entre les éléments ainsi que
leurs dérivées premiéres. Par opposition, les fonctions des éléments usuels sont dites
a continuité C0, c’est a dire qu’elles sont continues entre les éléments mais pas leurs
dérivées.

Les éléments a continuité d’ordre supérieur a CO font généralement appel a des fonctions
d’interpolation de type polynédmes d’Hermite, c’est a dire que les fonctions d’interpolations
et leur dérivées sont associées a des degrés de liberté indépendants.

Lélément de Fox-Bogner-Schmidt [bogner_generation_1966 ] est un quadrangle a
quatre noeuds avec des fonctions d’interpolation de type Hermite a continuité C1. C’est
le seul élément a continuité C1 capable de fonctionner sur un maillage de quadrangles
réguliers.

Léquation (-74) décrit les fonctions de forme de I'élément linéaire Q4. Ces fonctions sont
associées aux degrés de liberté pour lesquels la continuité C1 n’est pas nécessaire. Les
équations 375 (876) (3.77) gt (3.78) correspondent respectivement aux degrés de libertés
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FIGURE 3.7 — Représentation de I'élément de Fox-Bogner-Schmidt. Les cercles remplis
de noir représentent les points, les autres cercles représentent la continuité des dérivées,
les fleches représentent les dérivées partielles croisées.

w, w1, wa et wo. La figure 3.8 illustre les fonctions de formes N'H! N1H2 N1H3 ot N1H4,

N'Y = (1/4 X (=1 + &) x (=1 +1)
N = —(1/4 X (E+ 1) X (=1 +1)

(3.74)
N¥E = —(1/4x (-1 +&)x(n+1)
N =(1/4xE+ )X (+1)
N = 1716 x (1 -2 x 2+ O X (1= X 2+ 1)
NHUZ 116 x (1 + €2 X 2 =) x (1 =) X (2 +1)
N =1/16 x 1 =& x 2+ x 1 +n)*x 2 -1n) &7
NHMU= 1716 x (1 + &2 x 2 - X1+ x (2 -1)
N2 = 1/16x (1 =) x (1= &) x (1 = n)? X 2+ 1))
NM2 = 1716 X (-1 + )X (1 +E) X (1 =2 X 2 +7)
N =1/16x (1 -EH)x1-Hx A +n)? x (2 - =0
= m°x@2-n)
N4742:1/16x(_1+§2)x(1+§)><(1+17)2><(2—77)
N3 =1/16x (1= x 2+ H)x (1 -P) x (1= 1)
N3 = 1716 X (1 + 62 x 2 - &) x (1 =Py x (1 =) 3.77
N3P =1/16 X (1 = €)* x 2+ &) X (=1 + ) x (1 + 1) e
N4 = 1716 x (1 + €2 x 2 = &) X (=1 +12) x (1 +17)
NHE=1/16x (1 -)x 1 - x 1 -1y x (1 - 1)
2H4 _ _ 2 -n? -
NP = 1/16x (-1 + ) x (1 + &) x (1 = P) x (1 = 1) (3.78)

N3 = 1716 x (1 =) x (1 — &) X (=1 + 12 x (1 +17)
N = 1716 X (-1 + )X 1+ E) X (-1 + P x (1 + 1)

s 7 2 ATi YAN 2 ATi ™ o
Les dérivées secondes 687’\2’, 367]\2’ et gx—g; sont obtenues de la méme maniéere que les
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FIGURE 3.8 — Fonctions de formes N'H1 N1HZ NIH3 gt N1H4,

dérivées premiéres en utilisant la matrice hessienne comme illustré dans I'équation 3-89,
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Les matrices B, B;, B et B¢, présentées ci-dessous peuvent étre utilisées avec I'équa-
tion (3-5) afin de générer la matrice de rigidité élémentaire [%¢].

i i P i i i
W Uy woWwy Wh Wi 1 N

&1l NEo oo 0o 0 0 0 0
B,=en |-+ 0O NYf 0 0 0 0 0 0 - (3.81)
&1 N NE O 0o 0 0 0 0
i w Wfl sz Wf12 N
-1 o o -NTI' N -NTP O -NTEH 0
— iH1 iH2 iH3 iH4
By=-wxn |- 0 0 -Np'O-NRE O -NRD O -NRE 00 -] (382)
—2w1 0 0 -2Nf' 2N aNTB S oNTE 0 0
u‘i ”é l Wfl sz Wflz )/i 7’5
ge B3| 0 0 0 0 0 0 NEOO (3.83)
' ovn 0o 0 0o o 0 o0 o0 N4
”li “é w! Wf] sz Wflz Vli 7’3
Y131 0 0 0 0 0 0 N 0
Y232 0o 0 0 0 0 0 o0 N*<
B = iz o (3.84)
Y132 0O 0 0 O 0 0 N72 0
Y231 o 0 0 0 0 o0 o0 Nf
Linterpolation de la fleche s’écrit alors :
4 4
wém = WNTE ) + 3 wNTE )+
n=l n=t (3.85)

4 4
Z W’nnNn(H?)(f, n + Z W’r:ann‘Hél(é_-’ 1)

n=1 n=1

Cet élément, tout comme I'élément de Fox-Bogner-Schmidt présenté a la section 3.3.3.1,
assure la continuité des fonctions d’interpolation, leur dérivées, ainsi que leurs déri-
vées secondes. Le maillage de n’importe quelle surface s’appuyant sur un maillage
de son contour est toujours possible en triangles. Méme si on souhaite privilégier les
quadrangles, ils peuvent étre indispensables a la réalisation de certains maillages, au
moins localement. Cela confére a I'élément triangle un caractére plus général. Aussi
connu sous le nom de Triangle d’Argyris, il est présenté pour la premiere fois par Ar-
gyris [argyris_tuba_1968 ]. A noter que Bell [bell_refined_1969 ]| propose lui aussi un
triangle a continuité C1 a 18 degrés de liberté sans normale sortante. Le polynéme des
fonctions de formes de cet élément est alors contraint a une variation cubique, et il y a
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donc 6 degrés de liberté a chaque nceud. Cet élément triangulaire, développé par Ar-
gyris [Argyris1968 ], est décrit par Zienkiewicz [zienkiewicz_finite_2000 ]. Il assure la
continuité aux noeuds des degrés de liberté suivants :

ow ow *w Pw Fw

Cette formulation comprend donc 18 degrés de liberté. D’apres le triangle de Pascal, un
polyndme du cinquiéme ordre complet comprend 21 mondémes. Pour compléter la liste
des variables, on rajoute la dérivée normale dw,/dn comme degré de liberté aux noeuds
des milieux d’arétes. Celle-ci est définie par :

owy,

on

= cos (/’)n% + sin ¢n% (3.86)
ox ay

Les coefficients de chaque polyndme peuvent alors s’exprimer au travers d’une matrice
[C] de taille 21 x 21 de la fagon suivante :

a] az CZ3 a4 P as

w1 [ 1 X1 1 x% R y?
w2 1 X2 2 x% e yg
w3 1 X3 V3 x% ... yg
dolo 1 0 2, - 0

2 4

gyl 0 0 1 0 5y

[C] = (‘)2w| 0 0 0 ) L 0 (387)

Ox?

; | ~
oo 0 0 20y

& ) )
swlo 0 0 0 e 0
% | O cos¢s sing3 2x3cos¢gz .- 5y§ sin ¢ |

Il est alors possible de déterminer les fonctions de forme d’un triangle quelconque défini
par les coordonnées de ses noeuds x,,y, en obtenant les coefficients du polyndme du
cinquiéme ordre dans un vecteur {a} :

() = [C]{a) (3.88)
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Il est alors possible de formuler la matrice [B,] de I'équation 3.82 en un point de coor-
données x,y de la fagon suivante :

(8] = [QI[C"| (3.89)
avec
000 -2 0 0 —6x -2y 0 - =2y 0 0
[Ql=|0 00 0 0 -2 0 0 —2x --- —6x%y -—12xy> -20y° | (3.90)
000 0 -2 0 0 —4x -4y --- —12x> -8 0



Aprés avoir présenté un modele de plaque générique dans le chapitre 2 ainsi que dif-
férentes méthodes de discrétisation dans le chapitre 3, nous proposons ici plusieurs
applications et études illustrant le fonctionnement du modeéle. Nous présentons, dans
un premier temps, une validation du modéle ainsi qu’'une étude comparative de diffé-
rents jeux de warping functions. Les résultats numériques obtenus sont la fleche pour
un chargement statique et la premiére fréquence de résonance pour le cas dynamique.
La méthode de Navier est utilisée pour obtenir les résultats qui permettent de valider le
fonctionnement du modéle. Par la suite, a I'aide de la méthode de Rayleigh-Ritz, nous
présentons une étude vibroacoustique et énergétique d’'une plaque traitée avec un patch
PCLD, soumise a une onde plane progressive. Nous présentons la réponse de la plaque
sous forme de vitesse quadratique moyenne accompagnée d’une étude montrant I'origine
de la dissipation énergétique pour un patch PCLD. Enfin, nous proposons une méthode
d’identification des propriétés des matériaux viscoélastiques par méthode inverse, faisant
appel a notre modele de plague couplé a un algorithme génétique.

La méthode de Navier étant réservée aux plaques homogenes, nous étudions ici diffé-
rents stratifiés modélisés avec différents jeux de warping functions. A des fins de compa-
raison, la solution tridimensionnelle exacte est calculée pour chaque cas test. Le charge-
ment est alors également réparti sur les plans supérieurs et inférieurs de chaque plaque.
De plus, cette solution exacte est utilisée pour obtenir des warping functions avec la
méthode décrite dans la section 2.7.5. La méthode de Navier permet aussi d’obtenir la
premiéere fréquence de résonance pour chaque stratifié pour le cas dynamique. Cette
section propose I'étude de cing stratifiés dont un panneau sandwich. Seulement deux
matériaux sont utilisés, un matériau composite isotrope transverse et un matériau nid
d’abeille pour le panneau sandwich. Leurs propriétés mécaniques sont données dans les
tables 4.1 ou les indices L et T indiquent les directions longitudinales et transverses a la
direction des fibres.
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E, (Pa) E;(Pa) Gur (Pa) Grr(Pa) vir=ver pf (kg.m®)

25E; 10° 0,5Er  0,2E; 0,25 1500
E=E{(Pa) E;(Pa) G5, (Pa) G5 =G (Pa) ¥, =¥, =1 o (kgm?
4% 107 5x10°  1,6x10° 6% 10° 0,25 100

TABLE 4.1 — Propriétés mécaniques des matériaux utilisés.

Les simulations sont effectuées sur une plaque rectangulaire de dimensions a et b. Trois

variables sont considérées et comparées a celles obtenues avec les solutions analytiques

de type Pagano :

— La fléche w est adimensionnalisée & I'aide de I'équation 1), 1 étant I'épaisseur totale
de la plaque et g¢ la pression de chargement.

_ 100wE™/ h?

qolt

*

(4.1)

— La premiére fréquence de résonance est adimensionnalisée en utilisant I'équation 2.

w* = (Wl [h) \Jp"e | Eref (4.2)

— La variation de la contrainte de cisaillement transverse aux points A et B décrits dans
la figure 2.7, qui elle n’est pas adimensionnalisée.

On prendra E™*/ = E5 et p'/ = p° pour les stratifiés, et E*/ = EJ. et p*/ = p/ pour le
panneau sandwich.

La méthode de Navier a été implémentée a I'aide du logiciel de calcul Maple. Les résultats
obtenus avec les warping functions issues des solutions analytiques (notées 3D WF)
et celles obtenues avec la procédure itérative (notées lterative) sont comparés a ceux
obtenus avec les warping functions correspondant aux modeles classiques (fonctions
données dans la section 2.7).

Cette plague composite est composée de trois plis, dont les propriétés sont mentionnées
dans la table 4.1, avec une séquence d’empilement [0/90/0] et b = 3a.

Parmi les modéles implémentés, nous pouvons identifier trois types de modeles diffé-
rents, groupés en fonction des hypothéses sur lesquels ils sont basés. La premiéere ca-
tégorie est celle des modéles dits classiques, qui pour cette étude, ne comprend que
le modéle de Mindlin-Reissner (ici noté FSDT). La seconde catégorie regroupe les mo-
déles dont les warping functions sont basées sur des hypothéses mixtes (déplacements
et contraintes). Pour cette étude, cela inclut les modéles de Reddy (noté HSDT), Wood-
cock et Pai (noté EHOPT). La derniére catégorie de modéle est celle dont les warping
functions sont issues des équations d’équilibre de la mécanique ; ce qui inclut les mo-
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déles notés 3D WF et lterative.

Les résultats statiques et dynamiques présentés dans les tables 4.2 et 4.3 montrent que
les deux modeles dont les warping functions sont issues des équations d’équilibre de
la mécanique donnent des résultats tres satisfaisants pour tous les élancements. Ces
deux modeéles, générés avec deux méthodes trés différentes, donnent des résultats quasi
identiques. Ceci est principalement di au fait que les deux modéles sont basés sur les
équations d’équilibre de la mécanique, ce qui explique la concordance avec les résultats
issus de la solution analytique. La figure 4.1 montre cette méme concordance et aide
a soutenir cette conclusion. La différence avec la solution analytique est expliquée par
le fait que, pour celle-ci, le choix de diviser le chargement de la plaque entre les plans
inférieurs et supérieurs du stratifié induit que les contraintes transverses o33 ne sont
pas nulles. Ainsi, en fonction des cas, lorsque I'importance relative des o33 par rapport
aux autres degrés de liberté devient prédominante, I'hypothése des contraintes planes
considérée dans le modéle ne peut étre respectée.

a/h = 2 4 10 100
Modeéle w Erreur w Erreur w Erreur w Erreur
FSDT 6,6164 —18,98% | 2,0547 -27,17% | 0,75314 —18,04% | 0,50588 —0,35%
HSDT 7,8943 -3,33% | 2,6411 -6,38% | 0,96222 4,71% | 0,50700 -0,13%
Woodcock 7,8130 -4,32% | 2,7172 -3,68% | 0,88102 -4,12% | 0,50721 —0,09%
EHOPT 6,4960 -20,45% | 2,7331 -3,12% | 0,91831 -0,07% | 0,50766 0,00%
3D WF 8,4448 3,42% | 2,8458 0,88% | 0,92059 0,18% | 0,50767 0,00%
Iterative ne converge pas 2,8459 0,88% | 0,92059 0,18% | 0,50767 0,00%

Solution analytique | 8,1659 2,8211 0,91891 0,50766

TABLE 4.2 — Comparaison de la déflection statique entre les différents modéles pour une
plaque composite [0/90/0] pour différents élancements.

h/2

—h/2

0’13(0, b/Q)

T
-0.5

T
-0.1

—5-1072
023 (a/2, 0)

3D WF Tterative ‘

|

FIGURE 4.1 — Contraintes de cisaillement transverse aux points A et B pour une plaque
composite [0/90/0] avec a/h = 4.

Solution analytique
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a’h = 2 4 10 100
Modéle w Erreur w Erreur w Erreur w Erreur
FSDT 3,8633  12,97% | 6,9503 17,60% | 11,4970 10,47% | 14,0502 0,11%
HSDT 3,5336 3,33% | 3,1331 3,77% | 10,7501 3,29% | 14,0435 0,07%
Woodcock 3,5485 3,76% | 6,0461 2,19% | 10,6353 2,19% | 14,0407 0,05%
EHOPT 3,8845 13,59% | 6,0265 1,97% | 10,4182 0,10% | 14,0344 0,00%
3D WF 3,4197 0,00% | 5,9084 0,03% | 10,4054 0,02% | 14,0342 0,00%
Iterative ne converge pas | 5,9084 0,03% | 10,4053 0,02% | 14,0342 0,00%
Solution analytique | 3,4198 5,9100 10,4078 14,0343

TABLE 4.3 — Comparaison de la premiére fréquence de résonance entre les différents
modeéles pour une plaque composite rectangulaire [0/90/0] pour différents élancements.

Par ailleurs, nous remarquons que, pour le cas dynamique, les modeles 3D WF et lte-
rative donnent des résultats tres satisfaisants. Ceci tend a confirmer I'hypothése du non
respect de la condition de contraintes planes a cause du chargement appliqué pour la
solution analytique ; en effet, la cas dynamique ne faisant pas intervenir de chargement,
ce probleme n’est donc pas présent.

Dans le but d’étudier le comportement de structures comportant une forte variation de la
rigidité au travers de I'épaisseur, nous nous proposons ici d’étudier un panneau sandwich
carré avec une épaisseur de plis définie par hy = hy = 0,1h et h, = 0,8h. Les peaux
sont constituées d’un pli du matériau composite utilisé pour les autres configurations et
le coeur est composé d’un nid d’abeille dont les propriétés sont aussi données dans la
table 4.1.

ah = 2 4 10 100
Modele w Erreur w Erreur w Erreur w Erreur
FSDT 0,50904 44,74% | 0,16645 45,57% | 0,05797 34,15% | 0,03536 0,93%
HSDT 0, 85343 7,34% | 0,28349 7,30% | 0,08252 6,27% | 0,03563 0,18%
Woodcock 0,90224 2,05% | 0,30453 0,42% | 0,08773 0,34% | 0,03569 0,01%
EHOPT 0, 88896 3,49% | 0,30416 0,54% | 0,08971 0,14% | 0,03569 0,00%
3D WF 0,90893 1,32% | 0,30636 0,18% | 0,08817 0,16% | 0,03570 0,00%
lterative ne converge pas 0,30638 0,19% | 0,08817 0,16% | 0,03570 0,00%

Solution analytique | 0,92108 0,30581 0,08803 0,03570

TABLE 4.4 — Comparaison de la déflection statique entre les différents modéles pour le
panneau sandwich avec différents élancements.



71
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’ Solution analytique 3D WF Tterative ‘

FIGURE 4.2 — Contraintes de cisaillement transverse aux points A et B pour un panneau
sandwich avec a/h = 4 pour les trois méthodes implémentées.

a’h = 2 10 100
Modele 7) Erreur w Erreur w Erreur w Erreur
FSDT 6,9339 29,88% | 12,2334 33,77% | 21,0958 22,82% | 27,2469 0,36%
HSDT 35,4307 1,72% | 9,4351 3,17% | 17,7164 3,14% | 27,1721 0,09%
Woodcock 5,2900 0,92% | 9,1084 0,40% | 17,1850 0,05% | 27,1491 0,00%
EHOPT 5,3281 0,20% | 9,1152 0,33% | 17,1681 0,05% | 27,1481 0,00%
3D WF 5,2917 0,88% | 9,0832 0,64% | 17,1427 0,20% | 27,1471 0,00%
Iterative ne converge pas | 9,0840 0,88% | 17,1427 0,20% | 27,1471 0,00%

Solution analytique | 5,3389 9,1452 17,1766 27,1479

TABLE 4.5 — Comparaison de la premiére fréquence de résonance entre les différents
modéles pour un panneau sandwich tri-couche pour différents élancements.

Nous pouvons remarquer que pour ce cas test, les warping functions du modeéle de
Woodcock sont particulierement adaptées car elles peuvent traduire la forte variation
des déformations de cisaillement transverse. Le modéle de Woodcock pose pour hypo-
thése la constance des contraintes de cisaillement transverse. En observant la variation
des contraintes de cisaillement transverse sur la figure 4.2, nous pouvons voir que cette
hypothése (de constance des contraintes de cisaillement transverse) permet une approxi-
mation satisfaisante de la répartition de ces contraintes. Nous pouvons donc en conclure
que, pour les structures a fort ratio de module de Young entre les couches, le modéle de
Woodcock donne des résultats satisfaisants. Nous montrons dans la section 4.2 qu’il est
par exemple bien adapté a la simulation de plaques traitées avec des patchs PCLD. Par
ailleurs, ce modéle, au contraire des modeéles dont les warping functions sont issues des
lois de I'élasticité tridimensionnelle, ne nécessite pas de calculs préalables. Il est donc
simple & implémenter.
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Nous considérons ici une plaque composite carrée (b = a) composée de deux couches
d’épaisseurs égales dont la séquence d’empilement est antisymétrique [-15/15].

a/h = 2 4 10 100
Modeéle w Erreur w Erreur w Erreur w Erreur
FSDT 4,3448 4,61% | 1,5762 7,60% | 0,77629  3,29% | 0,62204 0,04%
HSDT 4,3110 5,35% | 1,6594 2,73% | 0,79522 0,93% | 0,62224 0,01%
Woodcock 3,8609 15,23% | 1,5082 11,59% | 0,76841 4,27% | 0,62197 0,06%
EHOPT 3,9837 12,54% | 1,6197 5,05% | 0,79522 0,93% | 0,62222 0,02%
3D WF 4,8403 6,27% | 1,7413 2,08% | 0,80668 0,49% | 0,62235 0,00%
Iterative ne converge pas | 1,7415 2,09% | 0,80670 0,50% | 0,62235 0,00%
Solution analytique | 4,5548 1,7059 0, 80272 0,62235
k(%) 6,22% 1,24% 0,07% 0,00%

TABLE 4.6 — Comparaison de la déflection statique entre les différents modéles pour
une plaque composite avec une séquence d’empilement antisymétrique [—15/15] pour
différents élancements.
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FIGURE 4.3 — Contraintes de cisaillement transverse aux points A et B pour une plaque
composite avec une séquence d’empilement antisymétrique [+15/—15] avec a/h = 4 pour
les trois méthodes implémentées.
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ah = 2 4 10 100
Modele w Erreur w Erreur w Erreur w Erreur
FSDT 4,7206 5,62% | 7,7953 4,57% | 11,2179 1,74% | 12,6702 0,03%
HSDT 4,7612 6,53% | 7,6324 2,38% | 11,0928 0,60% | 12,6749 0,01%
Woodcock 4,9993 11,85% | 7,9690 6,90% | 11,2752 2,26% | 12,6770 0,02%
EHOPT 4,9478 10,70% | 7,7274 3,66% | 11,1163 0,81% | 12,6752 0,01%
3D WF 4,4827 0,30% | 7,4377 0,23% | 11,0126 0,13% | 12,6738 0,00%
Solution analytique | 4,4695 7,4548 11,0265 12,6740

TABLE 4.7 — Comparaison de la premiere fréquence de résonance entre les différents
modeles pour une plague composite avec une séquence d’empilement antisymétrique
[-15/15] pour différents élancements

Bien que cette structure puisse sembler simple a simuler, nous constatons en observant
la table 4.8 que les modéles dont les warping functions sont issues des équations d’équi-
libre de la mécanique (notés 3D WF et lterative) semblent étre moins performants que
les modeles classique tel que la HSDT. Ceci peut s’expliquer une nouvelle fois par le non
respect des conditions de contraintes planes (nécessaires a notre modéle de plaque).
En effet, dans la solution analytique, les o33 sont non nuls. La raison pour laquelle les
modéles classiques obtiennent de meilleurs résultats pour de faibles élancements n’est
pas encore bien comprise, une analyse plus approfondie est nécessaire.

a’h = 2 4 10 100
Modele w Erreur w Erreur w Erreur w Erreur
FSDT 4,3108 3,63% | 1,4643 8,42% | 0,60418 4,82% | 0,43300 0,08%
HSDT 4,5250 1,16% | 1,6205 1,35% | 0,63708 0,36% | 0,43335 0,00%
Woodcock 4,3108 3,63% | 1,4643 8,42% | 0,60418 4,82% | 0,43300 0,08%
EHOPT 4,5250 1,16% | 1,6205 1,35% | 0,63708 0,36% | 0,43335 0,00%
3D WF 4,7796 6,85% | 1,6297 1,92% | 0,63711 0,37% | 0,43335 0,00%
lterative ne converge pas | 1,6298 1,93% | 0,63714 0,37% | 0,43335 0,00%

Solution analytique | 4,4730 1,5989 0,63477 0,43333

TABLE 4.8 — Comparaison de la déflection statique entre les différents modéles pour une
plague composite composée d’un seul pli pour différents élancements.
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FIGURE 4.4 — Contraintes de cisaillement transverse aux points A et B pour une plaque
composite composée d’un seul pli avec a/h = 4 pour les trois méthodes implémentées.

a/h = 4 10 100
Modeéle w Erreur w Erreur w Erreur w Erreur
FSDT 4,7281 4,85% | 8,1438 5,17% | 12,7948 2,59% | 15,1897 0,00%
HSDT 4,6229 2,52% | 17,7526 0,12% | 12,4640 0,06% | 15,1896 0,00%
Woodcock 4,7281 4,85% | 8,1438 5,17% | 12,7948 2,59% | 15,1897 0,00%
EHOPT 4,6229 2,52% | 7,7526 0,12% | 12,4640 0,06% | 15,1896 0,00%
3D WF 4,5043 0,11% | 7,7311 0,16% | 12,4636 0,06% | 15,1896 0,00%
lterative ne converge pas | 7,7311 0,16% | 12,4636 0,06% | 15,1896 0,00%

Solution analytique | 4,5094 7,7437 12,4713 15,1897

TABLE 4.9 — Comparaison de la premiére fréquence de résonance entre les différents
modeles pour une plaque composite composée d’un seul pli pour différents élancements.

Nous considérons ici une plaque composite carrée dont la séquence d’empilement est
symétrique [0/30/0]. Cette configuration est choisie puisqu’elle n’implique aucune simpli-
fication dans le systéme linéaire 349 i. e. la matrice [K] n’a pas de terme nul.
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ah = 2 4 10 100
Modéle w Erreur w Erreur w Erreur w Erreur
FSDT 4,3110 7,72% | 1,4700 13,79% | 0,59897 8,33% | 0,42339 0,14%
HSDT 4,7450 1,57% | 1,7025 0,15% | 0,64701 0,97% | 0,42390 0,02%
Woodcock 4,4049 5,71% | 1,5616 8,42% | 0,62084 4,98% | 0,42363 0,08%
EHOPT 4,5986 1,56% | 1,7138 0,51% | 0,65454 0,18% | 0,42399 0,00%
3D WF 4,9866 6,74% | 1,7375 1,90% | 0,65579 0,37% | 0,42400 0,00%
Iterative ne converge pas | 1,7376 1,91% | 0,65579 0,37% | 0,42400 0,00%

Solution analytique | 4,4730 1,7051 0,65337 0,42398

TABLE 4.10 — Comparaison de la déflection statique entre les différents modéles pour
une plague composite [0/30/0] pour différents élancements.
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FIGURE 4.5 — Contraintes de cisaillement transverse aux points A et B pour une plaque
composite [0/30/0] avec a/h = 4 pour les trois méthodes implémentées.

a’h = 2 4 10 100
Modele w Erreur w Erreur w Erreur w Erreur
FSDT 4,4845 1,77% | 7,8142  4,24% | 12,4939 1,46% | 15,3647 0,05%
HSDT 4,4994 2,11% | 7,5603 0,86% | 12,3699 0,61% | 15,3579 0,01%
Woodcock 4,6683 5,94% | 7,8819 5,15% | 12,6245 2,68% | 15,3629 0,04%
EHOPT 4,5753 3,83% | 7,5351 0,52% | 12,2989 0,03% | 15,3563 0,00%
3D WF 4,4068 0,01% | 7,4847 0,15% | 12,2872 0,06% | 15,3561 0,00%
Iterative ne converge pas | 4,4840 0,16% | 12,2871 0,06% | 15,3561 0,00%

Solution analytique | 4,4064 7,4961 12,5950 15,3562

TABLE 4.11 — Comparaison de la premiere fréquence de résonance entre les différents
modeles pour une plaque composite [0/30/0] avec différents élancements.

Pour ce cas, les résultats des modeles issus de I'élasticité tridimensionnelle sont en adé-
quation avec la solution analytique ce qui valide le modeéle pour les stratifiés avec une
séquence d’empilement n’impliquant aucune simplification dans le systéeme (aucun terme
nul dans la matrice [K].
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Nous proposons ici, I'étude d’'une plaque en aluminium recouverte d’'un patch PCLD sur
40% de sa surface. La plague est soumise a une onde plane progressive. La simulation
est réalisée a l'aide de la méthode de Rayleigh-Ritz associée au modele de Woodcock.
Nous présentons dans un premier temps, une comparaison de la vitesse quadratique
moyenne de la plaque obtenue de trois fagons différentes : avec la méthode de Rayleigh-
Ritz et le modéle de Woodcock, avec un calcul éléments finis tridimensionnel (Cast3m), et
avec un calcul éléments finis faisant intervenir une formulation de plaque de type LW (FFT
Actran). Puis, afin d’étudier le comportement du modeéle vers de plus hautes fréquences,
une étude bidimensionnelle de la plaque est proposée.

Nous proposons ensuite une analyse énergétique de la plaque patchée. Nous écrivons
tout d’abord les formules permettant d’obtenir les puissances dissipées, de déformation
et cinétiques a partir des grandeurs de la structure discrétisée. Puis, nous étudions la
répartition de ces puissances dans la plaque patchée afin de pouvoir cibler 'origine de
I'effet dissipatif du patch. Enfin, nous proposons trois criteres basés sur les puissances
conservées et dissipées, qui permet de quantifier I'efficacité du traitement viscocontraint.

Dans cette section, une plaque d’aluminium rectangulaire, de dimensions a;, = 0,6 m, b, =
0,5 m, et d’épaisseur » = 1 mm, est soumise a une onde plane progressive, se déplacant
vers la plaque, d’angles d’incidence 6 = 457, ¢ = 45°, et d’'amplitude 1 Pa (voir figure 4.6).
La plague est encastrée sur ses quatre cétés. Laluminium a les propriétés suivantes :
module de Young E = 7,24 x 10'° Pa, densité p, = 2780 kg.m‘3, coefficient de Poisson v =
0, 33, et facteur de perte n; = 0,005. Un patch PCLD, composé de deux couches, centré,
avec les dimensions a, = 0,3795 m, b, = 0,3162 m, couvre 40% de la surface totale
de la plaque. La premiére couche est composée de matériau viscoélastique ISD 112 et
d’épaisseur de 0,2 mm avec une densité de 1015 kg.m~> et un coefficient de Poisson de
0,45. Le tableau 4.12 présente la dépendance fréquentielle des propriétés du matériau
viscoélastique & une température donnée. A des fins de programmation, une interpolation
est utilisée et les formules employées sont présentées dans les équations 3 et (4), La
couche de contrainte a une épaisseur de 0,2 mm et est constituée du méme aluminium
que celui de la plaque.

E(f) = 10(0488410g(/)+53848) (4.3)

U(f) — 10(0,0175 log(£)3+0,0571 log(f)?+0,0015 log(£)—0,0874) (44)

Etant donné la grande disparité des modules de Young entre les couches et le fort élan-
cement de la plaque étudiée, le modele de Woodcock a été choisi. Ce modéle a pour
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FIGURE 4.6 — Vue de la plaque patchée soumise a une onde plane progressive d’angles
d’incidence 6 et ¢.

Frequency (Hz) Young’s Modulus (Pa) Loss factor

10 7,28 x 10° 0,90
100 2,34 x 10° 1,00
500 5,20 x 10° 1,00
1000 7,28 x 10° 0,90
2000 9,88 x 10° 0,80
3000 1,17 x 107 0,75
4000 1,38 x 107 0,70

TABLE 4.12 — Variation des propriétés du matériau viscoélastique ISD 112 en fonction de
la fréquence (T=25°C).

avantage d’étre relativement efficace sur ce type de configurations et de ne pas nécessi-
ter de calculs préalables comme pour les méthodes présentées dans la section 2.7.5.

Afin de vérifier la validité du modele utilisé pour une plaque patchée, une comparaison est
réalisée avec deux types de simulations par éléments finis. Les deux modeles éléments
finis associés sont de type tridimensionnels : la plaque, la couche viscoélastique et la
couche de contrainte sont toutes les trois discrétisées avec un élément par couche au
travers de I'épaisseur.

Ces deux modeéles utilisent le méme élément hexaédre a 20 noceuds, toutefois I'élément
choisi dans le code ACTRAN implémente une formulation de plaque de type LW réduisant
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ainsi le degré d’interpolation sur I'épaisseur de la plaque et permettant ainsi de réduire la
taille du systéme. Lélément choisi dans le code Cast3m utilise uniquement les équations
de I'élasticité tridimensionnelle et donc n'implique pas d’hypothéses cinématiques. Afin
d’éviter des temps de calcul trop longs, la taille des maillages est fixée a 59 x49 x 1 + 37 x
31 x2 (91104 DDL) pour le modele Cast3m et a 40 x 33 x 1 + 25 x 21 x 2 (42264 DDL)
pour le modéle Actran. Pour chaque modeéle, il existe une fréquence au dela de laquelle
une solution correcte ne peut plus étre obtenue sans augmenter la taille du probleme.
Les calculs ne sont pas effectués au dela de ces fréquences.

La figure 4.7 montre I'évolution de la vitesse quadratique moyenne ((V2)) en fonction du
nombre de degrés de liberté (DDL) pour les deux fréquences de 400 et 3000 Hz. Pour
la simulation a 400 Hz de la figure 4.7(a), il est montré que la convergence est achevée
avec dix fois moins de DDL pour la formulation Layer-Wise (LW) implémentée sous Actran
que pour la formulation tridimensionnelle. Le modele bi-dimensionnel étudié est capable
de donner les mémes résultats avec deux fois moins de DDL que pour la formulation
LW. Pour le cas a la fréquence 3000 Hz présenté a la figure 4.7(b), la méme tendance
est observée, mais la convergence avec la formulation tridimensionnelle n’a pas pu étre
achevée avec notre ordinateur pour cause de limitation de mémaoire.

La figure 4.8 présente I'évolution de la vitesse quadratique moyenne ((V2)) en fonction
de la fréquence pour les trois modéles. Les calculs ont été arrétés pour chaque code
lorsque les temps de calculs commencaient a étre prohibitifs.

Afin de permettre une comparaison a plus haute fréquence, la taille du systéme doit étre
augmentée. Ceci ne peut étre fait facilement pour les deux approches tridimensionnelles
utilisées précédemment. Le modele bi-dimensionnel présenté ici permet des simulations
a de plus hautes fréquences.

Afin de permettre une validation du modéle a de plus hautes fréquences, un modeéle
poutre utilisant le méme champ de déplacement a été réalisé en fixant I'ordre maxi-
mum de la base a zéro dans la direction y (permettant ainsi seulement un déplace-
ment constant). Ensuite, une comparaison de ce modele est réalisée avec un modeéle
de poutre, éléments finis, bi-dimensionnel, implémenté avec Cast3m (’hypothése de dé-
formation plane a été appliquée).
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FIGURE 4.7 — Etude de convergence pour les trois modéles : évolution de la vitesse
quadratique moyenne ((V?)) a la fréquence de 400 Hz (a) et 3000 Hz (b) en fonction du
nombre de degrés de liberté.

Pour chaque modele, le méme cas test est simulé : une poutre de longueur a = 0,6 m
et d’épaisseur h = 1 mm est excitée avec une onde plane acoustique d’angle d’incidence
0 = 45° et d’'amplitude 1 Pa. La poutre est couverte avec un patch PCLD centré, composé
de deux couches avec pour dimension a, = 0,3795 m et les mémes caractéristiques que
dans les études précédentes.

Lordre maximum de la base est de 100 dans la direction x ; cette valeur est obtenue avec
une étude de convergence a 10 kHz. Le maillage du modéle éléments finis est choisi
apres une étude de convergence et est composé de 3000 x 10 éléments pour la plaque
de base et 1898 x 2 éléments pour le patch (pour le patch, il y a un élément par couche
pour la direction z).

La simulation est réalisée sur la bande de fréquence 10— 10000 Hz. La figure 4.9 présente
'évolution de la vitesse quadratique moyenne ((V?)) en fonction de la fréquence pour les
deux modeles. Ceci montre que le modéle étudié est en accord avec le modele éléments
finis jusqu’a 5 kHz. Les résultats sur la bande de fréquence 5 kHz - 10 kHz sont similaires.
Il est intéressant de remarquer que le modeéle éléments finis bi-dimensionnel prend en
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FIGURE 4.8 — Evolution de la vitesse quadratique moyenne ((V2)) pour les trois modgles.

compte la déformation suivant I'axe z (e,, peut étre différent de zéro).
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FIGURE 4.9 — Vitesse quadratique moyenne ((V?)) pour le modéle de poutre : comparai-
son du modéle étudié a un modeéle élément fini bi-dimensionnel en déformation plane.

Dans cette section, il est montré que la méthode des éléments finis avec une formulation
tridimensionnelle de I'élasticité n’est pas adaptée a I'étude des patches PCLD. Ceci né-
cessiterait un maillage trés fin et donc générerait de trop grands systéemes d’équations.
Le modele éléments finis tridimensionnel, avec une formulation LW, donne de meilleurs
résultats. Ces deux approches ont été implémentées dans le but d’avoir une solution de
référence, et il est montré que ces résultats s’accordent trés bien tant qu’une convergence
est possible.



81

Le modeéle étudié, qui est aussi un modele de plaque multi-couche, donne des résultats
satisfaisants comparé aux modéles de plaque tridimensionnels tout en conservant les
bonnes performances de calcul des modéles bi-dimensionnels. Ceci montre donc que les
hypothéses du modele de Woodcock sur les champs de déplacements et de contraintes
du modele étudié sont adaptées a I'étude des patchs PCLD.

Ce chapitre s’intéresse aux différents indicateurs énergétiques utiles a la compréhension
du phénoméne d’amortissement vibratoire d’'une plaque patchée. Lénergie vibratoire ré-
partie dans une plaque peut étre divisée en deux partie, I'énergie dissipée e, (r) et I'éner-
gie conservée e.(r). Cette derniere est également composée de I'énergie potentielle de
déformation e(z) et de I'énergie cinétique e (7).

Les déplacements sont supposés petits. Les matériaux utilisés sont viscoélastiques avec
un amortissement hystéretique. lls sont supposés obéir a la généralisation anisotropique
du modele de Kelvin-Voigt,

el vi .
oij =0+ 0 = Cijugn + Nijkiéx

avec Ciji = Ciji = Cuij €t Mijr = Nijik = Naij (4.5)

ou le symbole &, marque la dérivée temporelle de ¢;;. Le tenseur du second ordre des
contraintes de Cauchy o est la somme de deux tenseurs du second ordre symétriques
o et o, qui représentent respectivement les contributions élastiques et visqueuses des
contraintes.

Pour des raisons physiques, lorsque I'on traite les structures amorties, il peut étre inté-
ressant d’accéder aux répartitions spatiales des densités de I'énergie cinétique e.(r), de
I'énergie de déformation e,(r), et de la puissance dissipée p,(r). Définissons ces quantités
en fonction du temps :

1 1 1
er(t) = Epvi(t)vi(t) es(r) = EUf}(l)Sij(l) = Ecijklgkl(l)sij(t) (4.6)

pa(t) = o'l\.]}(t)éi (0 = Nijén()éj(t)

avec v; la vitesse associée au déplacement ;. Comme les structures amorties sont sou-
vent modélisées en utilisant les nombres complexes, il est intéressant d’utiliser les puis-
sances complexes, qui, comme il sera expliqué par la suite, donnent les moyennes tem-
porelles, identifiées par le symbole (o), des quantités décrites précédemment. De plus, il
est possible d’écrire I'équilibre des énergies au niveau local et global en incluant la puis-
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sance complexe incidente P;,. et les moyennes temporelles de la puissance dissipée, de
I'énergie cinétique, et de I'’énergie de déformation.

Sous forme complexe, la loi comportement des matériaux -2 en régime harmonique
devient :
Gij = Cijk€n + J Wiiji€ (4.7)

La moyenne temporelle des quantités quadratiques des formules ) peut étre construite
en prenant la moitié de la partie réelle du produit hermitien correspondant :

1 1 1 .
() = 2p71%  (es(0) = 7Re(@Ey)  (pa(0) = JRe(ui}j'&))  (4.8)

Le symbole Re peut étre omis pour I'énergie cinétique car ce terme est réel. La symétrie
majeure du tenseur du quatrieme ordre dans la loi de comportement ci-dessus implique
que &f}*éij est réel et que ¢*1*&;; est imaginaire. Puis, le symbole Re restant dans I'équa-
tion 4-8) peut aussi étre omis. En effet :

1, 1. |
(ew®) = 2oV (es(n) = Zcr?} & (pa0) = 5jwii & (4.9)

Il peut étre intéressant de remarquer que :

1_,. | R o Vik .1
5018 = 5(0'?} &ij+ 07 8ij) = 2(es(D) =] = (pa(0) (4.10)

Nous montrons ici qu'il est possible de formuler une équation d’équilibre des puissances
complexes locales, valide en tout point de la structure. On remarque par ailleurs, que si
I'équation est valide en tout point, elle est par conséquent valide pour le domaine entier.
Par opposition, une équation d’équilibre des puissances complexes globale n'implique
pas que cette équation soit vérifiée localement. Léquation locale apporte donc une in-
formation supplémentaire sur I'équilibre des puissances. Commengons par les équations
d’équilibre de la mécanique :

ogjij+pf’ =pvi (4.11)

avec v; 'accélération associée a v;. Pour le probléeme harmonique correspondant, I'utili-
sation des quantités complexes permet d’écrire :

Gjij+pfi = jwpv; (4.12)
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Léquation d’équilibre des puissances complexes est alors obtenue en multipliant la moitié
du produit hermitien de I'équation “4-12) par {¥;}, ce qui donne :

1 ~ 1 .
=PV  f =] zwp (4.13)

i ~
Vi Tjij+ il B

N —

En faisant une intégration par partie sur le premier terme, nous pouvons écrire :

1
wpV; Vi (4.14)

1 1
v”0'j,+ —(V;Gji),; + pva—Jz

2

D’aprés la symétrie du tenseur des contraintes, il est possible d’écrire :

L oo, (4.15)

~ 1., . 1 .~ .
D +(§V,'O-ji),j+ Epvl.fl.L :sz

l\.)l»—

ou D;; est le tenseur des vitesses de déformation. Lorsque les déformations sont petites,
on écrit D;; = ¢, ce qui implique que D;; = jwg; pour une excitation harmonique. En
introduisant I; = 17767 comme le flux d’énergie (aussi connu sous le nom de vecteur
d’intensité), on écrit :

1

- 1 o~ .1 . 1 .
I+ Epvifiv :Jprvi Vi+] waijo-ﬁ (4.16)

Le remplacement des termes de la partie droite de I'équation avec I'aide de I'équation (49
et (419 permet d’écrire I'équation locale d’équilibre des puissances :

PV fi = (pa®) + 2j w(ex(n)) — {es(n))) (4.17)

l\.)lv—ﬂ

Léquation discrétisée 18 avec une formulation en déplacements (e.g., en utilisant la
méthode des éléments finis ou la méthode de Rayleigh-Ritz) est un systeme d’équations
linéaires écrit avec une matrice de masse [M], une matrice de rigidité complexe [f(] un
vecteur de force {f} et le vecteur des déplacements {iz} qui est ici 'inconnue.

(K] - o ) ) = {7} (4.18)

Classiquement, le vecteur {f} est la somme des vecteurs des forces de volume {f"} et de
surface {fs}. Les quantités de I'’équation 18 peuvent ensuite étre exprimées en fonction
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des quantités du systéme discrétisé :

Py = Sé%fz;‘ffds = —%jw{ﬁ*T}{f}s (4.19)
Pp= | suifav = —siof@|{} (4.20)
(Ex(0)) = fv %pf/;‘f/idv = %wz {a T} v i) (4.21)
(Es(t)) = fq/ %Re(d’?jéij)dV = %{ﬁ*T}[Re(f()]{ﬁ} (4.22)
(Pa(D)) = Iv % Re(j wa);&;/)dV = %w T} [tm(K) | {1} (4.23)

EQUILIBRE GLOBAL DES PUISSANCES COMPLEXES

Les puissances (P,(1)), 2w (Ex(1)), et 2w (E(r)) données par les trois codes sont présen-
tées en fonction de la fréquence dans la figure 4.10. Il est alors possible de conclure que
chacun des codes de calcul utilisés donne le méme résultat malgré le fait gqu’ils soient
basés sur des méthodes trés différentes.
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FIGURE 4.10 — Puissances (P,(1)), 2w (E(1)), and 2w (E(¢)) pour les trois modeles diffé-
rents : Rayleigh-Ritz, le modéle Actran LW éléments finis et le code de calcul éléments
finis tridimensionnel Cast3m.

Afin de vérifier I'équilibre global des puissances de I'équation (+-18) les énergies et les
puissances globales sont calculées avec les vecteurs et matrices correspondants au
moyen de la formule de la section 4.2.5.2. Puis, nous séparons les parties réelles et
imaginaires de I'équilibre des puissances, ce qui donne le systéme :

(4.24)

Re(Pys + Ppv) = (Pa(1))
Im(Pgs + Pp) = 20(Ex(1) — (Es(1))

Ces formules ont été testées pour le modele étudié sur la bande de fré-
quence 5 — 1200 Hz. Lerreur relative & de I'équilibre des puissances a une valeur maxi-
mum réelle et imaginaire de Re(e) = 1,102 x 108 et Im(e) = 1,206 x 1073 sur la bande de
fréquence simulée. Ceci confirme la formule de la section 4.2.5.2 et montre que I'équilibre
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des puissances complexes est vérifié.

Il est possible de distinguer a l'intérieur de chaque couche la contribution de chaque

mode de déformation. Les contributions a I'énergie de déformation,

— des composants 11, 22, et 12 du tenseur des contraintes et déformations (dans le
plan),

— des déformations de cisaillement transverse autour de I'axe xz (composant 13),

— et des déformations de cisaillement transverse autour de I'axe yz (composant 23),

peuvent étre calculées séparément.

Le tableau 4.13 montre ces contributions pour la structure étudiée, lorsque celle-ci est
excitée par une onde plane acoustique a la frequence 80 Hz. Ce tableau présente :

— la puissance dissipée (P;(1))

— la puissance équivalente de déformation’ 2w (E(1)).

Pour la structure étudiée, 80 Hz correspond a une basse fréquence non modale. Une
comparaison avec les résultats du modeéle éléments finis tridimensionnel montre un bon
accord entre les résultats.

Rayleigh-Ritz || Cast3m 3D | Rayleigh-Ritz I Cast3m 3D

Composantes | (Pa) (W)  Part || (Pud)) (W)  Part || 2w(E,0) (W) Part || 2w(E»)) (W) Part
1122 12 (33) 3,118 x 1077 5,4% || 3,107x1077  5,7% || 6,230x 10 92,0% || 6,203x 107>  92,2%
13 3,209x 1070 56,0% || 2,999 x 10 54,7% || 3,202x107°%  4,7% | 3,024x10° 4,5%

23 2,206 107°  38,5% || 2,178 x 107° 39,7% || 2,200x 10  3,2% || 2,190x107¢  3,3%

Total | 5,726 x 10-¢ || 5,488 x 107° || 6,770x 107 | 6724% 107

Couche | (Pa®) (W)  Part || (Ps0) (W)  Part || 2w(E,0)) (W) Part || 2w(E»)) (W) Part
Plaque 2,477x 1077 4,3% || 2,585x 1077  4,7% || 4,953x107° 73,2% || 5,171 x 107  76,9%

Couche viscoélastique
Couche de contrainte

5,415%107° 94,6% || 5,177x 1076 94,3% || 5,395 x 107° 8% 5,158 107 7.7%
6,385x 107 1,1% | 5,189% 1078 1,0% 1,275%x 1075 18,9% || 1,038 x 107>  15,4%

Total | 5,727 x 1076 || 5.488 x 107 | 6.767 %107 | 6,724 x 107

TABLE 4.13 — Répartition des puissances conservées et dissipées sur les différentes di-
rections de I'espace obtenue avec la méthode de Rayleigh-Ritz et la formulation éléments
finis tridimensionnelle a 80 Hz.

Ces résultats montrent clairement I'importance du réle des déformations dues au cisaille-
ment transverse dans la couche de matériau viscoélastique pour I'amortissement. On
peut aussi remarquer I'importance de la déformation dans le plan des couches élas-
tiques pour I'énergie de déformation. Bien sur, ceci est d0 & la position de chaque couche
dans la structure et aux modules de Young relatifs aux matériaux. La localisation de la
déformation due au cisaillement transverse dans la couche de matériau viscoélastique et
dans les couches rigides supérieures et inférieures n’est pas surprenante puisque cette

1. la puissance développée sur un cycle par les forces internes élastiques est nulle
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observation est connue pour les structures sandwich. Ce qui est plus surprenant est la
forte contribution de la couche viscoélastique a 'amortissement. En effet, on peut remar-
quer que le module de Young du matériau viscoélastique est (a cette fréquence) 35000
fois plus faible que le module de Young de I'aluminium. Avec un facteur de perte de 0, 005
pour I'aluminium et 1, 0 pour le matériau viscoélastique, la couche de matériau viscoélas-
tique est responsable de 94,6% de la puissance dissipée sur toute la structure, tandis
gu’elle occupe seulement 6,9% du volume total de la structure, 2,6% de la masse et re-
couvre 40% de la surface. Ceci s’explique en effet de part I'amplitude des déformations au
sein de la couche de matériau viscoélastique. En effet, le gradient de déformation moyen
de la couche viscoélastique est largement supérieur a celui des couches métalliques.

On remarque que les contributions des composantes 13 et 23 sont majoritairement gou-
vernées par la déformée, elles varient donc avec la fréquence ou I'excitation, mais leur
somme est a peu pres constante lorsque I'on fait varier la fréquence. Il est aussi intéres-
sant de remarquer que la contribution mineure de la composante 33 a été ajoutée a la
contribution de I'énergie “dans le plan” pour le modeéle tridimensionnel.

En comparant le modéle étudié, qui peut étre classé comme un modéle zig-zag équi-
valent monocouche (d’apres la classification donnée dans [Carrera2004 ]), avec le mo-
dele éléments finis tridimensionnel, on remarque que celui-ci est capable de déterminer
précisément les contributions de chaque couche et chaque mode de déformation des
puissances conservees ou dissipées.

Il est possible d’obtenir les déformations a partir du champ de déplacement décrit
dans [Sun1973 ] et ensuite de calculer les valeurs locales de &(x,y,z) et &(x,y,z). Lin-
tégration de la formule 19 sur z et la multiplication par (j w) donne :

1 h h h
5 [ o aion et = [z 2io [ onan:  @25)
0 0 0

ce qui permet définir les densités de puissances surfaciques associées p*(x,y),
(B5(x.y.), et 2w (&3(x.y. 1)) :

PP y) = (e, 0) + 2jw(el(x,y,1) (4.26)

Pour le systéme décrit dans la section4.2.1, la vitesse quadratique <u§(z)> = 1/2 W?#it3,
les deux puissances <p‘:i(x,y, t)> et 2w (ei(x,y, 1)) sont cartographiées pour les deux fré-
quences 80 Hz et 850 Hz et sont présentées dans les figures 4.11 et 4.12. La fréquence
850 Hz a été choisie pour explorer la bande des moyennes fréquences et parce que
le patch semble avoir une faible efficacité d’aprés les criteres présentés dans la sec-
tion 4.2.5.6.
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FIGURE 4.11 — Cartographies pour la fréquence de 80 Hz.

En comparant les figures 4.11(a) et 4.11(c), il est possible de remarquer un lien direct
avec la vitesse quadratique et la localisation de I'énergie de déformation. La figure 4.11(b)
montre que la localisation de la puissance dissipée est différente de celle de I'énergie de
déformation.
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FIGURE 4.12 — Cartographies pour la fréquence de 850 Hz.

A la fréquence plus élevée de 850 Hz, il est possible de conclure & partir de la figure 4.12
que la puissance associée avec I'énergie de déformation 2w (ei(r)) tend a étre stockée a
I'extérieur de la surface patchée ; a l'inverse, la puissance dissipée <pfi(t)> tend a étre plus
faible qu’a la fréquence de 80 Hz. Il est possible de considérer que le patch n’est pas tres
efficace a cette fréquence ; il est donc intéressant de calculer les ratios présentés dans
la section 4.2.5.6.

Il est aussi possible de voir une asymétrie, en particulier pour le deuxiéme cas avec une
fréquence d’excitation de 850 Hz. Ceci est di a I'angle d’'incidence de 'onde plane acous-
tique incidente. Les niveaux d’énergie sont plus hauts dans le coin opposé a la prove-
nance de I'onde acoustique. Ceci peut s’expliquer par le fait que I'onde plane acoustique
incidente créé une onde plane progressive dans la plague, avec une longueur d’onde cor-
respondant a la projection de la longueur d’onde de I'onde plane incidente. Cette onde
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plane progresse dans la méme direction que la projection de I'onde plane incidente et
apporte de I'énergie au coin opposé. Cette énergie rebondit sur les bords de la plaque,
mais I'amortissement réduit la quantité d’énergie réfléchie, ce qui explique I'asymétrie
observée. Ce phénoméne a été observé pour plusieurs angles d’incidence et plusieurs
fréquences, et il est plus facile de le voir sur une animation. Quoi qu’il en soit, le rdle
présumé de ce phénoméne sur 'amortissement n’a pas été étudié a ce jour.

Cet outil, permettant de visualiser la distribution de I'énergie sur la plaque, apporte un
nouvel aspect au probleme de la disposition optimum des patchs. Cette méthode déter-
ministe permet aussi une meilleure compréhension de la fagon dont le patch amorti les
vibrations.

Comme premiére introduction de l'utilisation des puissances et des énergies dans les
systemes amortis, cette section propose une investigation des critéres d’efficacité des
patchs d’un point de vue énergétique. Un critere usuel de la transmission du son au tra-
vers d’une plaque communément rencontré dans la littérature est la transparence acous-
tique (Transmission Loss — TL), qui est définit comme le ratio entre la puissance acous-
tigue incidente et la puissance acoustique transmise. Cependant, ce ratio n’'indique pas
directement l'efficacité du patch d'un point de vue strictement mécanique. En effet, la
transparence acoustique est un indicateur global des vibrations de la plaque, qui inclue
I'efficacité de rayonnement des modes et d’autres paramétres acoustiques. Les indica-
teurs présentés ici, 1, n2 et 3 sont uniquement basés sur I'efficacité du patch :

)
' 20 (E()
_(PaD)
T = 20 (B0
~ (Pa(0))
" 20((Ex(0)) + (E5(0)))

(4.27)

n3

Ces indicateurs peuvent éventuellement étre utilisés pour obtenir des fonctions objectif
utilisées lors de l'implémentation d’algorithmes d’optimisation.

Lindicateur n, est adapté a I'optimisation du patch avec comme objectif I'efficacité acous-
tique ; I'énergie cinétique de la structure est considérée comme directement liée aux
émissions acoustiques de la structure. Lindicateur n, est adapté a I'optimisation méca-
nique du patch. En effet, si 'on minimise I'énergie de déformation, cela tend a réduire le
niveau de vibration de la structure. Lindicateur n3;, quant a lui, est un indicateur hybride
combinant les indicateurs n; et n,.

On remarque que l'indicateur n, est similaire a I'indicateur n présenté par Johnson et
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Kienholz [Johnson1982 ]. La principale différence est que 7, prend en compte I'énergie
dissipée totale tandis que n prend uniquement en compte I'énergie dissipée par la couche
viscoélastique.

0.12 T T T T T

0.1 n "N n

AR ARV
r
l" \
A,

81072 [y . A

0 | | | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000 22
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FIGURE 4.13 — Ratios 11, n,, et n3 sur la bande de fréquence 5Hz—3000Hz.

Si on analyse la tendance générale des trois courbes de la figure 4.13, nous pouvons
voir que les trois indicateurs tendent a diminuer lorsque la fréquence augmente. Ceci
peut s’expliquer avec la logique suivante :

— Dans les basses fréquences, la déformée de la structure patchée est proche de celle
de la structure nue, et seule 'amplitude des déformations de la plaque est affectée par
le patch.

— Dans les plus hautes fréquences, la vitesse quadratique moyenne sur la surface du
patch est plus faible que sur le reste de la plaque. La surface du patch se comporte
alors quasiment comme si elle était rigide, et le reste de la plaque comme si elle n’était
pas traitée.

En conclusion, il est donc possible de choisir un de ces nouveaux critéres d’optimisation
en fonction du but recherché pour le patch amortissant (i.e., limiter I'énergie cinétique
et/ou I'énergie de déformation). Essayer de maximiser un des critéres proposés a l'aide
d’'un algorithme d’optimisation devrait minimiser le stockage d’énergie cinétique et de
déformation autour du patch comme observé sur les cartographies présentées a 850 Hz.

Nous présentons ici une méthode inverse permettant d’identifier les paramétres maté-
riaux d’'une plaque patchée. Nous avons choisi de travailler sur une poutre. La méthode
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tente de faire correspondre la vitesse quadratique moyenne simulée a la vitesse quadra-
tique moyenne mesurée expérimentalement a I'aide d’'un algorithme d’optimisation. Dans
notre cas, nous tentons d’identifier le module de Young et le facteur de perte du matériau
viscoélastique. Loptimisation est réalisée a I'aide d’une combinaison d’'un algorithme de
tirage appelé Latin Hypercube Sampling (LHS) et d’'un Algorithme Génétique (GA).

Le premier algorithme est un tirage aléatoire développé par McKay [McKay ] comme une
alternative a un tirage purement aléatoire. Cet algorithme considére un hypercube qui est
I'espace de travail dans lequel des échantillons sont tirés et proposés pour I'optimisation.
Le principal avantage de cet algorithme est de garantir une meilleure utilisation de tout
I'espace de travail pour chaque variable et de limiter le nombre d’échantillons proposés.

Les GA sont des méthodes doptimisation stochastiques basées sur [I'évolution
naturelle et les théories génétiques. Ces algorithmes sont classiquement utili-
sés dans les méthodes d’identification comme par exemple dans les travaux de
Hwang [hwang_determination_2000 ] et Cunha [cunha1999 ] ou sont combinés ré-
sultats expérimentaux et solutions numériques afin de minimiser les différences pour des
systémes non amortis.

Pour I'algorithme proposé, nous parlerons d’échantillon pour chaque jeu de paramétres et
de génération pour chaque groupe d’échantillons simulés et comparés entre eux. Le LHS
propose dans un premier temps une génération initiale d’échantillons. Chaque échan-
tillon donne lieu a une simulation avec le modele générique (warping functions de Sun &
Whitney) pour obtenir la réponse a une excitation donnée sur une bande de fréquence.
Un indicateur est choisi (dans notre cas la vitesse quadratique moyenne). Puis, les ré-
sultats obtenus sont comparés a la mesure expérimentale et classés en fonction d’'un
critere choisi. Enfin I'algorithme génétique propose une nouvelle génération en réalisant
un croisement des données sur le plan binaire des meilleurs échantillons de la généra-
tion précédente. Le diagramme présenté dans la figure 4.14 montre 'algorithme dans
son ensemble, les paragraphes suivants présentent les détails de I'algorithme utilisé.



93

Domaine de
- =
variation

N2 nouveaux

’ Génération intiale (ns) ‘

!

Simulation

échantillons

Al Génération-i
numerique

Comparaison
VQ (R, A)

Critére d’arrét
satisfait ?

Geénération
impaire ?

Critére R

’ np meilleurs échantillons }7

¥

GA : croi-
sement

’ n. nouveaux échantillons }7

FIGURE 4.14 — Diagramme de I'algorithme utilisé

Une génération initiale de taille n; est proposée par la méthode LHS. Dans le but de
définir un espace de travail pour I'’hypercube de I'algorithme LHS, un domaine de variation
pour chaque paramétre des matériaux est proposé. Pour notre étude, ces limites sont
choisies a +x% de la valeur probable de chaque variable. La réponse, en terme de vitesse
quadratigue moyenne, est calculée pour chaque échantillon.

On dispose de deux courbes de vitesse quadratique moyenne, celle qui correspond a
I’échantillon simulé, et la courbe expérimentale. On calcule la corrélation entre les deux
courbes (premier critére) et l'aire entre les courbes (deuxieme critére). Ces deux cri-
téres sont calculées pour chaque échantillon afin de choisir les n, meilleurs échantillons
en utilisant le critére de sélection approprié. Pour la premiere itération, les échantillons
sont choisis avec le critere de corrélation. Les étapes suivantes proposent de nouveaux
échantillons en tentant d’'améliorer la valeur des critéres.
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La solution est recherchée en utilisant un GA avec un encodage binaire. Les n, meilleurs
échantillons, appelés parents, sont croisés au moyen d’une opération de croisement GA
produisant ainsi n, nouveaux échantillons, que nous appellerons enfants.

Aprés plusieurs itérations, les échantillons de chaque génération peuvent tendre a étre

tous identiques puisque la méthode ne recombine que d’anciennes informations pour en

créer de nouvelles. Afin de parer a cela, deux stratégies ont été mises en place :

— Pour chaque génération, la méthode LHS propose n,, nouveaux échantillons

— Lorsque deux échantillons sont quasiment identiques, 'un des deux est alors supprimé
et remplacé par un nouvel échantillon proposé par la méthode LHS.

Chaque nouvelle génération est alors constituée de l'union de n,, n. et ny, échan-
tillons. Une nouvelle simulation est faite pour cette génération, les vitesses quadratiques
moyennes obtenues sont comparées aux données expérimentales. Il est important de
noter que le nombre d’échantillons de chaque génération reste contant.

Le choix du meilleur échantillon est effectué par un double critére. Les critéres sont alter-
nés pour chaque génération. Ceux-ci sont définis ainsi :
— Générations impaires : le critere de corrélation est utilisé

Sy
Fay = = (4.28)
5.5,

ou §xy désigne la covariance entre les vitesses quadratiques expérimentales et simu-
lées, et S, §y leur écart type. Ce critére tend donc vers 1 lorsque les courbes de vitesse
quadratique expérimentales et simulées sont corrélées linéairement.

— Générations paires : le critére de I'aire entre les deux courbes est utilisé

1 w)
A= f |V Qexp(w) — VQsim(w)| dew (4.29)

wy — w1 w1

Les deux courbes sont alors parfaitement superposées lorsque A = 0.

La dualité des critéres de sélection améliore la performance du processus. Pour les gé-
nérations impaires, le critere de corrélation permet de "localiser les pics" tandis que le
critere de l'aire aide a réduire 'amplitude entre les courbes pour les générations paires.

Le processus itératif est arrété lorsque le critére de corrélation et d’aire ont tout deux
acquis des valeurs stables pour plusieurs générations successives.
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Lalgorithme décrit ci-dessus est utilisé pour identifier les parametres caractéristiques
d’'un matériau viscoélastique. Afin d’identifier avec précision les caractéristiques de I'alu-
minium utilisé et pour avoir la meilleure précision possible, la méthode est utilisée sur
deux configurations différentes. Une poutre A non traitée composée d’aluminium, de di-
mensions 17,7 mm x 128 mm x 0,98 mm, avec des conditions aux limites guidée-libre,
se voit imposer une accélération constante sur le bord guidé, sur la bande de fréquence
0—-400 Hz. Cette configuration permettra de déterminer avec précision les caractéristiques
de I'aluminium utilisé. Puis, dans un second temps, une poutre B totalement recouverte
d’un patch PCLD, de mémes dimensions et avec les mémes conditions aux limites, se voit
aussi imposer une accélération constante sur le bord guidé, sur la bande de fréquence
0 - 420 Hz. Les différentes couches de la structure sont composées de 0,99 mm d’alumi-
nium, de 0,5 mm de matériau viscoélastique amortissant et d’'une couche de contrainte
en aluminium de 0,2 mm. Le finalité de la mesure est d’obtenir le module de Young et le
facteur de perte du matériau viscoélastique.

Pour les matériaux viscoélastiques, le module de Young et le facteur de perte varient
avec la fréquence. Il est donc nécessaire d’effectuer une approximation des paramétres
en fonction de la fréquence. Pour cela, nous mesurons les caractéristiques du matériau
viscoélastique a 'aide d’'un viscoanalyseur. Les résultats obtenus avec cette mesure sont
donnés dans la figure 4.15. On remarque que pour différentes températures, la méme
tendance est observée, c’est pourquoi deux fonctions simples sont proposées pour re-
présenter le mieux possible les données dans une bande de fréquence limitée :

E(f) = af? (4.30)

n(f) = k x 10(-ent/a)?) (4.31)

Cette approximation nécessite de fixer la constante k a la valeur de 1, 18 pour le matériau
étudié. Les coefficients a, b, ¢ et d varient en fonction de la bande de fréquence et de la
température.
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FIGURE 4.15 — Module de Young et facteur de perte mesuré avec le viscoanalyseur

La méthode de Rayleigh-Ritz, telle que décrite dans la section 3.1 est utilisée pour les
simulations nécessaires a I'algorithme d’identification. Sur la direction x, 'ordre maximum
de la base est de 50, et sur la direction y, seules les fonctions 1 a 5 sont utilisées. Un
vrai probléme de poutre ne nécessite, en principe, que les fonctions numéro 1 et 3 afin
que les champs de déplacement soient constants dans la direction y. Cette configuration
est apparue trop restrictive et n’a pas permis d’obtenir des résultats satisfaisants. C’est
pourquoi les 5 premieres fonctions ont été retenues pour la direction y.

Afin de simuler les conditions expérimentales de cette étude, sur le bord x = 0, 'accélé-
ration transverse w°(0, y) = —w?*w’(0, y) est imposée. Ceci est fait en imposant I'amplitude
wl = —% sur les fonctions de la base ¢(x)¢1(y) et ¢1(x)¢3(y) au moyen de multiplica-
teurs de Lagrange.

La condition aux limites guidée correspond généralement a une rotation nulle de la
section. Comme ce modéle permet a chaque couche de tourner de maniere indépen-
dante, une condition plus générale est nécessaire. Toutefois, les déplacements longitu-
dinaux u; (0,y, +h/2) sont nuls aux plans supérieurs et inférieur a cause des mors. Par
conséquent, de trés petites rotations (correspondant aux déformations de cisaillement)
sont permises a cet endroit. C’est pourquoi la dérivée premiere de la fleche w?l(o,y)
et les déformations de cisaillement transverse y(l)3(0,y) sont choisies nulles. D’apres le
modeéle de Woodcock, cela implique que les déformations de cisaillement transverse
¥4,(0,y) de chaque couche sont nulles, et il en va de méme pour les rotations associées
¢4(0,y) = —wf’l(O,y) +745(0,y). D'autres conditions aux limites ont été testées mais elles se
sont révélées trop souples lorsque I'on comparait avec les résultats expérimentaux tandis
que les conditions présentées ici donnent d’excellents résultats.

Les déplacements plans u?(O,y) et ug(o,y) sur le bord x = 0 sont aussi choisis nuls en
éliminant les fonctions de la base ¢,(x)¢;(y). Il N’y a pas de forces imposée au systeme,
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seulement I'accélération mentionnée plus haut.

Un dispositif expérimental a été développé afin de mesurer la réponse vibratoire de la
poutre mentionnée ci-dessus. La figure 4.16 montre ce dispositif.

Chambre Climatique

45°

L D Vibrométre Laser k—— Controleur vibrométre

I 7
| Accélérométre
|
L 1]
Systéme
Pot vibrant d’acquisition

FIGURE 4.16 — Montage expérimental

La poutre est encastrée en son milieu par deux mors en aluminium. Afin d’éviter d’en-
dommager le matériau viscoélastique au niveau de I'encastrement, le patch est retiré
de la partie encastré et remplacé par un insert en alumium. En prenant en compte les
conditions de symétrie, seul la moitié de la poutre est analysée.

La poutre est excitée pour un déplacement harmonique imposé pour lequel 'amplitude
est choisie de fagon a ce que I'accélération soit constante au niveau de I'encastrement sur
une bande de fréquence. Lexcitation est réalisée a l'aide d’'un pot vibrant Bruel & Kjaer
Type 4810, produisant une force sinusoidale verticale, connecté aux mors en aluminium.
Le niveau d’accélération est mesuré par un accélérometre PCB 352 SN C33 et sert au
contréle du pot vibrant via un PID. La vitesse quadratique moyenne est calculée a partir
de la vitesse mesurée en 26 points différents le long de la poutre. Elle est obtenue avec
un vibromeétre laser Polytec OFV-505 associé a un contr6leur Polytec OFV-5000.

Le dispositif est placé dans une chambre climatique Weiss Technik KWP 64/75 afin d’as-
surer une température constante pendant les essais. A cause des caractéristiques géo-
métriques de la chambre climatique, il est nécessaire d'utiliser un miroir afin de réfléchir
le rayon laser a 90°.

Lacquisition est réalisée en utilisant fréquence d’échantillonnage de 1000 Hz et en pre-
nant 2000 échantillons a chague mesure. Chaque mesure est moyennée cinq fois pour
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chaque fréquence d’excitation.

La bande de fréquence 20-420 Hz est choisie de fagon a ce que les deux premiers modes
de vibration puissent étre mesurés. Le niveau d’accélération de 12 m.s™2 est choisi de
fagon a avoir un bon niveau de sensibilité sur la bande de fréquence.

L'algorithme décrit dans la section 4.3.1 est utilisé. Les valeurs des paramétres ny, n,, n.
et ny sont données dans la table 4.14. Certains paramétres matériaux choisis comme
constants sont donnés dans la table 4.15.

ng np ne Ny

65 10 55 10

TABLE 4.14 — Valeur valeurs des paramétres ny, n,, n. et ny, pour I'application.

Aluminium Matériau viscoélastique
Densité (Kg/m?) 2700 1000
Coefficient de Poisson 0,33 0,45

TABLE 4.15 — Propriété des matériaux qui sont considérées comme constantes

Pour la poutre A, le module de Young et le facteur de perte de I'aluminium sont les para-
metres recherchés. Le calcul est arrété aprés 52 itérations puisque I'algorithme n’a pas
proposé de meilleur échantillon pour 10 générations successives. La table 4.16 montre
les parametres des valeurs minimales et maximales données a l'algorithme LHS et les
valeurs du meilleur échantillon pour la génération 11 et la génération 52. Les bornes de
variation du module de Young de 'aluminium et du facteur de perte sont choisies a +20%
de la valeur de référence. On remarque tout d’abord que les résultats obtenus apres
convergence sont des valeurs tout a fait acceptables du module de Young et du facteur
de perte pour un aluminium. La figure 4.17 montre la vitesse quadratique moyenne as-
sociée aux résultats présentés dans le tableau ainsi que la vitesse quadratigue moyenne
mesurée expérimentalement.

On remarque sur la figure 4.17 une légére erreur de mesure expérimentale aux alentours
de 185 Hz. Ceci est du a un mode de résonance du support placé sous le pot vibrant.
Nous choisissons d’'ignorer cette erreur de mesure expérimentale. On peut aussi voir que
la différence des vitesses quadratiques entre la génération 11 et la génération 52 est
trés faible et difficile a percevoir a l'oeil nu. Ceci peut éventuellement laisser présager
d’éventuels probléemes de sensibilité au probléme considéré.
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En observant la table 4.16, on remarque que, pour le facteur de perte, I'algorithme
converge vers une valeur extérieure aux bornes données pour I'algorithme LHS. Ceci est
possible puisque le processus de croisement de 'algorithme génétique autorise des ré-
sultats en dehors de ces bornes. Cependant, cela montre qu’un choix adapté des bornes
de variation de chaque parameétre doit étre fait, ceci pouvant probablement aider 'algo-
rithme a converger plus rapidement.

Génération E (MPa) Facteur de perte R Aire
Valeur de référence 70 6,700E-03

Valeur minimum 57,6 5,360E-03

Valeur maximum 86,4 8,040E-03

11 70,43 1,620E-02 9,885E-01 7,358E-02
52 70,44 8,424E-03 9,865E-01 6,529E-02

TABLE 4.16 — Résultats obtenus avec I'algorithme proposé pour deux générations diffé-
rentes.

—— Expérimental
0 N Génération 11
Génération 52

| | | |
0 100 200 300 400
Fréquence (Hz)

Vitesse quadratique moyenne log((m/s)?)

FIGURE 4.17 — Vitesse quadratigue moyenne de la poutre nue : mesure expérimentale et
valeur calculées du meilleur échantillon pour les générations 11 et 52.

Pour la poutre B, les parameétres a et b (intervenant dans le module de Young), les pa-
rameétres ¢ et d (pour le facteur de perte) et le paramétre h (I'épaisseur de la couche
de matériau viscoélastique) sont les parameétres recherchés. Les résultats obtenus pour
la poutre A sont utilisés dans I'algorithme pour les parametres du matériau aluminium.
Aprés 76 itérations, I'algorithme ne converge toujours pas, et pour des raisons de temps
de calcul, le processus est arrété. Pour ce cas, si on s’intéresse a I’évolution du critere de
l'aire en fonction des générations (figure 4.18), on remarque que le calcul ne converge
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pas. Nous observons deux phénomeénes :

— Nous pouvons voir une oscillation de la valeur du critere pour les générations paires
ou impaires. Ceci vient du critére alternatif choisi. Ce phénoméne n’empéche pas l'al-
gorithme de converger ; on pourrait en effet considérer le calcul comme convergeé si les
valeurs pour toutes les générations paires et impaires étaient stables pour plusieurs
générations successives.

— Pour les générations paires, on observe une variation erratique de la valeur du critére
de l'aire. Cela vient du dynamisme apporté aux générations par le double critere. On
peut alors dire que I'algorithme ne converge pas.

C(l)gygrgence du critére d’aire
X

N
\]

2.65 | N

g
o
T
|

Aire entre les courbes

2.55

| | |
50 60 70

Génération

FIGURE 4.18 — Vitesse quadratique moyenne de la poutre patchée : mesure expérimen-
tale et valeur calculées du meilleur échantillons pour la génération 76.

Cependant, nous choisissons de garder les résultats de la génération 76, le critére de
I'aire étant minimum pour cette génération. Les résultats correspondants a cette généra-
tion sont donnés dans la table 4.17. Les valeurs obtenues sont plausibles bien que les
variables ¢ et d soient en dehors de la plage de variation initiale donnée a 'algorithme
LHS. Les vitesses quadratiques moyennes du calcul et de la mesure expérimentale sont
présentées dans la figure 4.19.

Génération a b c d h R Aire

Valeur de référence 272352 0,5606 0,01 87,5 0,005
Valeur minimum 217881,6 0,44848 0,008 70 0,004
Valeur maximum 326822,4 0,67272 0,012 105 0,006

76 319060,1 0,5149 0,016 64,4 0,000457 0,99809 0,0255

TABLE 4.17 — Résultats obtenus avec I'algorithme proposé pour la génération 76.
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FIGURE 4.19 — Vitesse quadratique moyenne de la poutre : mesure expérimentale et
valeur calculées du meilleur échantillons pour la génération 76.

Les résultats obtenus pour la méthode d’identification sont donc mitigés. Plusieurs ré-
sultats, relativement satisfaisants ont été obtenus. Cependant, les parametres mesurés
pour le matériau viscoélastique ne correspondent pas a ceux mesurés a l'aide du vis-
coanalyseur. La différence des résultats n’est cependant pas significative au point de
discréditer la méthode. Les différences peuvent en effet venir d’erreur de mesures, soit,
avec le viscoanalyseur, soit sur la poutre patchée. Pour la poutre patchée, I'échauffement
du matériau viscoélastique n’est pas pris en compte, et la température est un paramétre
qui influe sur la rigidité et 'amortissement de ce matériau.

Par ailleurs, la taille des générations et le nombre de parents ont été choisis de maniere
empirique apres plusieurs tests. Ces choix pourraient étre affinés. Il serait aussi possible
de créer un critére unique combinant les deux critéres choisis ici.
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La méthode, telle que présentée ici, est donc validée pour une configuration simple, telle
qu’une poutre nue. Une étude plus approfondie sur une plus grande plage de fréquence
mériterait donc d’étre faite pour l'identification des propriétés des matériaux viscoélas-

tiques.



Ce document présente différentes solutions aux problématiques de modélisation des
structures composites intégrant des éléments amortissants. |l a pour objectif de répondre
aux besoins de modélisation des plaques composites traitées avec des dispositifs anti-
vibratoires en fournissant un modéle adapté a l'utilisation d’algorithmes d’optimisation.
Une des applications de ce savoir-faire est de permettre 'amélioration du confort vibra-
toire et acoustique des véhicules. Différents aspects de la question ont été abordés, et
de nouveaux outils ont été développés pour répondre aux problemes posés.

Nous avons tout d’abord mis en évidence les besoins actuels en matiére de simulation
en présentant un état de I'art de la modélisation des plaques et certaines technologies
d’amortissement passifs et actifs. Ce travail nous a permis de mettre en évidence plu-
sieurs points :

— les modéles de plaque classiques ne permettent pas de répondre avec satisfaction
aux besoins de modélisation des plaques faiblement élancées ou munies de dispositifs
amortissants,

— de nombreux modeles de plaque ont été proposés dans la littérature, mais leur implé-
mentation est souvent délicate et nécessite un travail long et rigoureux,

— les dispositifs amortissants, passifs ou actifs, classiquement utilisés dans l'industrie,
induisent des perturbation des champs cinématiques de la plaque,

— malgré 'augmentation des capacités de calcul des ordinateurs, le développement des
processus d’optimisation implique un besoin de modeles performants. En effet, ceux-
ci permettent de limiter la taille des systémes a résoudre et autorisent l'utilisation de
méthodes d’optimisation itératives tels que les algorithmes génétiques. Cela justifie,
encore a I'époque actuelle, les efforts de développement de modeles de plaque "Equi-
valent Single Layer" que I'on constate dans la communauté scientifique.

Le probleme a été abordé sous plusieurs aspects différents :

— Nous avons présenté un modele de plaque générique, utilisant des warping functions.
Ce modele permet de retrouver les modéles de plaque classiques ainsi que plusieurs
autres modéles issus de la littérature. Loriginalité de cette approche réside dans la
caractéristiqgue générique du modele présenté. En effet, malgré la présence de formu-
lations unifiées pour les modéles de plaque, la littérature ne fait pas état d’'un modéle
générique, dédié aux formulations équivalentes simple couches (appelées ESL dans
ce document), permettant l'utilisation de warping functions quelconques. La formula-
tion unifiée la plus connue, telle que présentée par Carrera [carrera_unified_2005 ],
limite les warping functions a une forme polynomiale.
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— Nous avons proposé deux nouvelles méthodes d’obtention des warping functions is-
sues de formulations tridimensionnelles. Ces deux méthodes permettent d’obtenir une
précision dans la description des contraintes de cisaillement transverses jusque-la ja-
mais atteinte pour un modéle de plaque équivalent simple couche. Les configurations
les plus difficiles a simuler avec un modele de plaque étaient jusque Ia, limité par
la qualité de la description du cisaillement transverse. Ces méthodes apportent une
réponse a ces problémes. |l faut cependant nuancer I'importance de ces méthodes,
puisque celles-ci nécessitent, soit une solution analytique a priori, soit un processus
itératif. Par ailleurs, I'utilisation de warping functions, telle qu'implémentée dans ce mo-
déle, suppose que la répartition du cisaillement transverse ne dépend pas de x ou de
y.

— Plusieurs méthodes de discrétisation adaptées au modeéle générique ont été présen-
tées. Chacune d’elles possedent des avantages et inconvénients. On peut donc choisir
celle qui convient le mieux en fonction des besoins.

— La procédure de Navier permet de tester la qualité d’'un modéle, représenté ici par un
jeu de warping functions. Cependant la méthode est limitée aux plaques composites
orthotropes rectangulaires avec des conditions aux limites simplement appuyée et
soumises a un chargement de forme bi-sinusoidale.

— La méthode de Rayleigh-Ritz est adaptée a la simulation de plaques rectangulaires
traitées avec un ou plusieurs patchs amortissants passifs. La base proposée permet
l'implémentation de plusieurs conditions limites. Plusieurs types d’excitation peuvent
étre utilisées afin d’évaluer la réponse de la plaque, qui elle-méme peut étre quanti-
fiée au moyen de plusieurs indicateurs, comme par exemple la vitesse quadratique
moyenne. Méme si on peut adapter la méthode de Rayleigh-Ritz a des géométries
plus complexes, elle n’en reste pas moins trés limitée de ce cété la, contrairement a
la méthode des éléments finis.

— La méthode des élément finis permet de simuler le comportement de structures
aux géométries plus complexes avec une grande liberté de définition des condi-
tions aux limites, des chargements, ainsi que des couplages éventuels (autres sous-
structures, autres phénomeénes, etc.). Pour notre modele, la complexité d’implémen-
tation des éléments finis adaptés au modéle est cependant un aspect limitatif de la
méthode.

Les trois méthodes permettent de réaliser des études statiques et dynamiques (ré-
ponse a un chargement dynamique et recherche de modes propres) pour différents
jeux de waping functions.

Afin de valider et juger des capacités du modéle générique, plusieurs investigations nu-
mériques ont été menées.

La procédure de Navier a notamment permis de valider le modéle en comparant les
résultats obtenus avec une solution analytique a ceux obtenus avec le modele géné-
rique. Cette étude a aussi permis de souligner 'importance du respect des hypothéses
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de contraintes planes. En effet, la solution analytique n’est pas contrainte a respecter
cette hypothése, et pour certains cas de chargement et certains élancements, I'impor-
tance relative de o33 ne permet plus de garantir cette hypothese.

Une seconde étude basée sur la méthode de Rayleigh-Ritz a été présentée. Celle-ci
montre les capacités du modéle a simuler une plaque partiellement recouverte d’'un patch
PCLD lorsqu’elle est soumise a une onde plane progressive. Les résultats obtenus sous
forme de vitesse quadratique sont comparés a ceux obtenus avec deux codes de cal-
cul basés sur la méthode des éléments finis tridimensionnels. Une étude énergétique
de la plaque patchée a ensuite été proposée. Celle-ci permet de mener les premiéres
investigations sur I'origine de la dissipation énergétique des patchs visco-contraints.

Une derniére étude qui propose une méthode inverse d’identification des paramétres
matériaux basée sur notre modeéle a été décrite. La méthode permet, a partir d’'une me-
sure expérimentale de la vitesse quadratique, d’identifier les paramétres caractéristiques
du matériau viscoélastique. Cependant, cette méthode a permis de mettre au jour les
difficultés d’obtention de ces variables et souleve plusieurs questions sur le plan de la
sensibilité des parametres, du choix des observables, ainsi que sur le plan expérimental.

Les perspectives a I'issue de ce travail sont multiples. En effet, la simplification de I'écri-
ture (et de 'implémentation) de plusieurs modeéles de plaque ouvre la porte a de nouvelles
perspectives en terme de modélisation des plaques :

— Pour les plagues inhomogenes, e.g., les plagues munies d’'un patch PCLD, il serait
intéressant d’adapter le modéle utilisé en fonction de la zone, patchée ou non. Pour une
plaque isotrope patchée, il serait possible d’utiliser le modele HSDT pour la patchée
non traitée, et le modéle de Woodcock pour la partie patchée.

— La méthode de discrétisation des éléments finis, peut étre améliorée afin de simplifier
son implémentation.

— Au moyen de la méthode d’obtention des warping functions itératives, il est possible
d’'imaginer un algorithme capable d’itérer et d’obtenir un jeu de fonctions local. On
obtiendrait alors des ¢.s(x,y,z), ce qui permettrait de ne plus avoir I'hypothése de
constance sur x et y de la répartition des contraintes de cisaillement au travers de
I'épaisseur.

— Afin de ne plus étre soumis aux problemes liés aux hypothéses de contraintes (ou de
déformations) planes, une fonction de description de la déformation transverse pourrait
étre implémentée

Au sujet de I'optimisation du dimensionnement des systémes amortissants, il serait bien
entendu intéressant de coupler un algorithme d’optimisation de la répartition des patchs
sur la plague au modéle développé afin de pouvoir proposer des configurations optimales.
Il est possible d'implémenter un algorithme similaire a celui proposé pour notre méthode
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d’identification en changeant la fonction objectif.

Certains aspects peuvent étre développés au sujet du comportement énergétique des
patchs. Létude de la cartographie de I'énergie dissipée sur une configuraiton optimi-
sée pourrait éventuellement aider a créer des régles de conception et de répartition des
patchs viscocontraints.

Le sujet est donc encore vaste et plusieurs points méritent d’étre étudiés.



A

LIEN AVEC LE MODELE DE WOODCOCK

Nous présentons ici le lien entre le modéle décrit dans ce document et les coefficients
proposés dans le modéle de Woodcock [woodcock_free 2008 ]. Chaque coefficient dé-
crit par Woodcock correspond a un terme des matrices [A], [B], [D], [E], [F], [G] ou [H].

A B E
B D F
ET FT G
et

425 2y 247 | 225 2415 —Ags | =24 —2da —2Ai6 255 |
2471 49 260 | 2415 =241 —Adgo | —2A18 2412 2461 247
247 2Aer 4dos | 2441 2456 —Az9 | —2A44 —2A59 243 234
=215 =2A15 —244] 42 2413 Azg 24 2414 240 248
215 2411 2456 | 2413 415 Asy 2116 2410 2A4s5 263
—Ags —Adeo  —A | A3 Asa A | Aa As7 A27 A28
=2 2418 244 | 244 216 A4p 42, 2417 243 2450
=240 —2A12 2459 | 2414 210 As7 2417 48 2158 2465
246 261 243 | 240 2455 Ay7 | 2As3 2458 4dxz 243
| 2452 247 2434 | 2448 2463 Aag | 2450 2465 2431 4Ag |
(A.1)
[H]:H“’137 24 (A.2)
269 4A3g



108

avec :

A1s = A9

Azs = A6 = A36/2
A29 = A30
Az = A33
A34 = A3s

Ag1 = Ag9 = Ay5/2 (A.3)
Aaa = As1
Ag7 = 153

Ase = d6a = A60/2
As9 = Ae6

A2 = Agg



B

MATRICES DE NAVIER COMPLETES

Nous présentons ici les matrices complétes [K1], [K2], [K3], [K4], [M1], [M2], [M3] et

[M4] de I'équation (40 avec,

et

d’ou,

(K] =

[M] =

[ K1
| K3

[ M1
| M3

K2 l (B.1)

K4

.

it (B.2)
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Ce travail traite de la modélisation de structures composites intégrant des éléments amortissants
passifs. Un modéle de plaque "équivalent simple couche" générique utilisant des fonctions de
description du cisaillement transverse est présenté. Plusieurs méthodes d’obtention de ces fonctions
sont décrites, permettant de retrouver des modeles classiques ou issus de la littérature. Deux
nouvelles méthodes d’obtention de ces fonctions sont aussi présentées.

Plusieurs méthodes de discrétisation adaptées au modele générique sont étudiées. La méthode de
Navier permet de tester la qualité de chaque modéle associé a un jeu de fonctions de description
du cisaillement transverse. La méthode de Rayleigh-Ritz permet I'étude du comportement vibratoire
d’'une plaque rectangulaire munie d’un ou plusieurs patchs viscocontraints. Plusieurs éléments finis
issus de la littérature, adaptés au modele, sont aussi présentés.

A raide de la méthode de Navier, une étude numérique du comportement statique et dynamique
de plusieurs configurations de plaques permet la comparaison des différents modeles présentés.
La méthode de Rayleigh-Ritz est utilisée pour étudier le comportement vibratoire d’une plaque
munie d’un patch viscocontraint. Une comparaison des résultats obtenus avec le modéle présenté
et ceux issus de calculs éléments finis tridimensionnels permet de valider notre modéle. Une étude
énergétique de la plague patchée permet d’illustrer le comportement du patch. Enfin une méthode
inverse d’identification des matériaux viscoélastiques, basées sur une combinaison du modéle décrit
et d’'un algorithme génétique, montre une application du modéle.

Modéle générique, équivalent simple couche, patch viscocontraint

This work is on the subject of modelization of structures treated with passive damping elements. A
generic "equivalent single layer" plate model using transverse shear warping functions is presented.
Several methods to obtain these functions are described, allowing the implementation of classical
models and others issued from the litterature. Two new methods for obtaining these functions are
also presented.

Several discretization methods adapted to the generic plate model are studied. Navier's procedure
allows the testing of the quality of each model associated with a set of transverse shear warping
functions. Rayleigh-Ritz method allows the study of the vibrational behavior of a rectangular plate
treated with one or several constrained damping patches. Several finite elements issued from the
literature are also presented.

Using Navier's procedure, a numerical study of the static and dynamic behavior of several plate
configurations allows the comparison of the different plate models. Rayleigh-Ritz method is used to
study the vibrational response of a plate treated with a constrained damping patch. A comparison of
the results with those obtained with three dimensional finite element calculations permits the model
validation. An energetic study of the patched plate allow us to understand the constrainted damping
patch behavior. Finally, an inverse method, allowing the identification of the properties of viscoelastic
materials, based on a combination of the presented model and a genetic algorithm, shows a possible
application of the model.

Generic model, equivalent single layer, constrained damping patches
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