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INTRODUCTION

Depuis plusieurs siècles, les conceptions humaines sont de moins en moins le fruit d’un
savoir faire empirique mais sont issues du résultat de calculs eux-mêmes basés sur les
lois du monde physique. La compréhension des lois qui régissent le monde qui nous
entoure est donc essentielle à l’évolution de notre savoir faire. La modélisation des struc-
tures est un point essentiel à toute conception et cette affirmation est d’autant plus valable
que la technologie mise en œuvre est complexe. Le domaine des transports est un bon
exemple des évolutions en matière de conception. En effet, les exigences des consom-
mateurs sur les véhicules en matière de performances, de sécurité et de confort ayant
évoluées, la conception d’un moyen de transport repose aujourd’hui majoritairement sur
des simulations effectuées par des ordinateurs, impliquant souvent un processus d’opti-
misation.

L’évolution des capacités de calcul des ordinateurs n’est pas non plus étrangère à cette
tendance. Depuis maintenant plus d’un demi siècle, la méthode des éléments finis, as-
sociée aux lois de l’élasticité tridimensionnelle, permet d’effectuer des simulations du
comportement mécanique de structures complexes soumises à des chargements divers.
Cependant, les capacités de calcul des ordinateurs actuels ne permettent toujours pas
d’effectuer des simulations qui utiliseraient des éléments finis tridimensionnels, pour une
structure complexe comme celle d’une voiture ou d’un avion, car cela créerait des sys-
tèmes d’équations de taille trop élevée. Cette limitation est encore plus marquée lorsque
la finalité des simulations est d’effectuer un travail d’optimisation ; ces procédés requièrent
le plus souvent plusieurs itérations et donc de nombreux calculs.

Par ailleurs, les procédés de conception, même les plus pointus, ne permettent pas à ce
jour d’optimiser complétement toutes les structures. Ainsi, dans le domaine aérospatial,
il est reconnu qu’environ 40% de la masse d’un satellite résulte du sur-dimensionnement
qui lui permet de résister aux conditions vibratoires intenses dans lequel il se trouve lors
de son lancement [henderson_vibro-acoustic_2003 ]. Étant donné les enjeux liés à la
masse d’un satellite, cet exemple seul justifie l’importance de la recherche de nouveaux
procédés d’amortissement ainsi que le développement des simulations et des méthodes
d’optimisation pour les dispositifs actuels.

De manière générale, la maîtrise de l’amortissement est un point important lors de la
conception de nombreuses structures. Afin de palier aux problèmes vibratoires de cer-
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taines structures faiblement amorties, l’utilisation de patchs PCLD 1 (Passive Constrai-
ned Layer Damping – viscocontraints) est courante depuis leur introduction par Swal-
low [Swallow1939 ] en 1939. De nos jours, cette technologie est une solution simple et
économique pour réduire l’amplitude des vibrations et indirectement, le bruit rayonné par
une structure. Pendant des années, ces patchs furent quasiment exclusivement réservés
à l’industrie aéronautique ; toutefois Rao [Rao2003 ] a fait état de leur apparition dans le
domaine de l’automobile.

D’autre part, les comportements d’une structure peuvent être complexes et difficiles à
simuler au travers de méthodes réputées exactes. Il est donc nécessaire d’établir des
modèles permettant d’approcher le comportement de la structure physique en faisant
des hypothèses simplificatrices à plusieurs niveaux :
– Le comportement dynamique du matériau : le comportement d’un matériau soumis à

un chargement donné n’est pas systématiquement linéaire. La complexité du phéno-
mène est encore plus grande lorsque le phénomène d’amortissement des matériaux
est pris en compte. Afin de modéliser le comportement des matériaux, plusieurs mo-
dèles rhéologiques ont été proposés dans le but de simuler différents effets tels que
l’elasticité, la viscoelasticité et la plasticité.

– Le comportement de la structure : afin de limiter la taille des systèmes à résoudre, des
hypothèses simplificatrices peuvent être établies sur le comportement de la structure.
Les modèles de plaque où l’on choisit de poser des hypothèses sur les contraintes et
les déformations dans l’épaisseur de la structure sont une très bonne illustration de cet
aspect. Le plus souvent, le comportement de la plaque est basé sur des hypothèses
de répartition des contraintes dans l’épaisseur de la plaque par rapport à un plan de
référence où sont estimées les variables du champ de déplacements.

– La méthode de discrétisation : l’estimation de la réponse statique ou dynamique d’une
structure soumise à un chargement donné ne peut que très rarement être obtenue
à l’aide d’une solution analytique. Il est alors nécessaire d’utiliser une technique per-
mettant d’évaluer le comportement d’une structure ayant une géométrie quelconque.
On utilise alors une méthode de discrétisation, c’est à dire que les champs sont pro-
jetés sur des bases finies de fonctions choisies à priori, cela amenant à ne manipuler
qu’un nombre fini de variables. Ces variables peuvent avoir un caractère local (comme
pour la méthode des différences finies ou encore des éléments finis) ou non (comme
pour la méthode de Rayleigh-Ritz). La suite du calcul peut se faire de deux façons
plus ou moins équivalentes : dans certains cas, l’existence d’un principe des travaux
(ou puissances) virtuels amène à formuler le problème comme la recherche d’un mini-
mum d’énergie et dans d’autres cas, on recherchera le minimum d’un résidu dans une
équation.

Ce document tente de répondre aux besoins de modélisation de structures incorporant

1. Afin de se conformer avec les termes communément admis dans la littérature, et donc le plus souvent
en langue anglaise, ce document mentionne en priorité les acronymes couramment utilisés, puis en italique
le terme anglophone approprié suivi de la traduction en français.
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des éléments amortissants, afin de permettre une meilleure optimisation de ces traite-
ments et donc d’améliorer le confort vibratoire et acoustique des véhicules.

Nous proposons ici un modèle permettant de décrire le comportement de plaques compo-
sites munies de patchs PCLD. C’est un modèle générique utilisant des jeux de fonctions
de description du cisaillement transverse. Le choix de ces jeux de fonctions permet de
retrouver divers modèles de plaques issus de la littérature. D’autres propositions de jeux
de fonctions sont faites afin de répondre aux problèmes de modélisation posés ci-dessus.
Dans un second temps, nous présentons trois méthodes de discrétisation adaptées au
modèle proposé : la méthode de Rayleigh-Ritz, la méthode de Navier et la méthode des
éléments finis. Finalement, nous proposons plusieurs applications : tout d’abord, afin de
valider le modèle, nous le confrontons à des solutions analytiques et des résultats issus
de calculs éléments finis tridimensionnels, puis, nous décrivons une étude de la répar-
tition de l’énergie vibratoire complexe d’une plaque patchée, enfin nous proposons une
méthode d’identification à partir du modèle présenté.



1
ÉTAT DE L’ART

1.1/ PRÉSENTATION GÉNÉRALE DU PROBLÈME

Le vaste problème de la modélisation des plaques est étudié depuis de nombreuses
années afin de pouvoir répondre aux problèmes liés à la modélisation des structures,
des impacts, du comportement acoustique ou des vibrations. Parmi les premiers tra-
vaux sur les théories des plaques, nous pouvons notamment citer ceux de Kirch-
hoff [kirchhoff_uber_1850 ] en 1850 et de Love [Love1888 ] en 1888 qui établissent un
premier modèle de plaque sans prise en compte du cisaillement transverse ; ces travaux
font encore à ce jour référence dans la littérature. Ces approches simples permettent
d’obtenir des résultats, le plus souvent satisfaisants pour les structures fortement élan-
cées (ces modèles sont encore appelés "modèles de plaques minces") puisque pour
celles-ci, l’importance relative des contraintes de cisaillement transverse reste modérée.
Toutefois, les théories classiques ne permettent pas d’atteindre une précision satisfai-
sante dans trois cas :
– Lorsque l’élancement de la plaque est faible, les contraintes de cisaillement transverse

ne peuvent plus être négligées vis à vis des autres composantes, il est alors recom-
mandé d’utiliser un modèle adapté aux "plaques épaisses".

– Dans le cas d’une étude dynamique, au voisinage d’un mode d’ordre élevé, le rap-
port entre la longueur d’onde de flexion et l’épaisseur de la plaque peut se réduire
suffisamment pour que le mode de déformation s’apparente à la flexion d’une plaque
épaisse.

– Lorsqu’il y a un fort ratio de module de Young entre les couches de la plaque, la va-
riation des déformations de cisaillement au travers de la plaque est très importante et
doit être prise en compte. On retrouve cette situation dans le cas de l’application d’un
dispositif amortissant passif qui comporte un matériau viscoélastique à faible module
de Young.

A ce jour, l’enjeu principal est de modéliser le comportement d’assemblages multi-
couches complexes, composés de plaques composites anisotropes, ainsi que des dispo-
sitifs amortissants passifs, impliquant des matériaux viscoélastiques à faible module de
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Young ou encore des patchs piézoélectriques utilisés dans le contrôle actif. Par ailleurs,
le dimensionnement de ces traitements amortissants, qui fut empirique dans un premier
temps, implique de nos jours des besoins de simulation de ces systèmes afin de maximi-
ser leur efficacité.

La simulation du comportement des structures traitées nécessite l’utilisation de modèles
adaptés, permettant de prendre en compte les caractéristiques éventuellement aniso-
tropes des matériaux, tout en tenant compte des effets induits par les dispositifs amortis-
sants. La présence de ces derniers sur une structure rend la modélisation du comporte-
ment statique et dynamique de celle-ci bien plus complexe. En effet, l’ajout de couches
de matériaux viscoélastiques à faible module de Young ou piézoélectriques, implique le
plus souvent une perturbation des champs cinématiques due à une variation importante
du cisaillement transverse au travers de l’épaisseur de la plaque. Or, la plupart des mo-
dèles de plaques classiques posent pour hypothèse la constance des déformations de
cisaillement transverse dans l’épaisseur de la plaque. Il est donc nécessaire de dévelop-
per des modèles appropriés permettant de modéliser correctement les structures munies
de traitements amortissants.

1.2/ TRAITEMENTS AMORTISSANTS DES PLAQUES

Dans le domaine des transports, l’adjonction sur des plaques de dispositifs d’amortis-
sement des vibrations passifs, semi-actifs ou actifs est une pratique courante depuis de
plusieurs années. En effet, le niveau de confort des véhicules tendant à s’améliorer, les
attentes des passagers évoluant, les problématiques acoustiques et vibratoires sont de-
venues primordiales. Le contrôle des nuisances sonores repose en partie sur la limitation
des vibrations des structures qui peuvent être à l’origine du son.

C’est ainsi que l’utilisation de dispositifs d’amortissement passifs sur des plaques est
devenue courante dans les véhicules terrestres et aériens ; c’est un moyen simple et éco-
nomique pour améliorer le confort vibratoire et acoustique des véhicules. D’autre part, ils
ont pour avantage d’être relativement peu encombrants et légers lorsqu’on les compare
aux dispositifs d’isolation sonore usuels que sont les isolants acoustiques classiques (gé-
néralement constitués matériaux à densité élevée).

Les dispositifs actifs quand à eux, bien que très efficaces, sont plus chers et plus com-
plexes à mettre en œuvre. Ils sont donc réservés à des utilisations spécifiques, notam-
ment à la stabilisation de certains instruments dans les satellites ou d’autres applications
militaires.

Cette section présente les principales technologies passives et actives d’amortissement
des vibrations des plaques.
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1.2.1/ TRAITEMENT ADJOINTS À LA STRUCTURE : PATCHS VISCOÉLASTIQUES

CONTRAINTS ET NON CONTRAINTS

L’adjonction de traitement passifs à une structure vibrante est un moyen classique de
réduire l’amplitude des vibrations de celle-ci. Les traitements sous forme de patchs per-
mettent d’être ajoutés à la structure sans avoir à reconcevoir la pièce concernée. Parmi
les patchs passifs, on distingue deux types de technologies :
– Les patchs FLD, (Free-Layer-Damping – viscoélastiques non contraints), sont géné-

ralement composés d’une seule couche de matériau polymère qui se déforme en
extension-compression lorsque la plaque fléchit. Ce type de traitement est utilisé dans
l’automobile lorsque l’on rajoute une couche de "mastic" aux planchers ou autres par-
ties de la carrosserie. L’efficacité de ces traitements est principalement liée à l’épais-
seur de la couche de matériau viscoélastique appliquée et est donc souvent limitée du
fait des restrictions de poids.

– Les patchs PCLD, (Passive-Constrained-Layer-Damping – viscoélastiques contraints),
sont composés d’une fine couche de matériau viscoélastique fortement amortissant
(et à faible module de Young) recouverte d’une couche d’un matériau plus rigide, le
plus souvent métallique. Lorsque la structure de base fléchit, le matériau viscoélas-
tique est contraint de se déformer en cisaillement grâce à la couche supérieure rigide.
D’un point de vue historique, les patchs PCLD sont mentionnés pour la première fois
en 1939 dans un brevet britanique [Swallow1939 ] qui décrit un système de patchs
viscoélastiques contraints, collés, qui est dédié à l’amortissement des vibrations de
panneaux de porte d’avion. À ce jour, cette méthode fait partie des traitements amor-
tissants classiques utilisés dans l’industrie. Ils se présentent, le plus souvent, sous la
forme de patchs autocollants à répartir sur toute ou partie de la structure. La techno-
logie PCLD est généralement plus efficace que la FLD car d’avantage d’énergie est
dissipée en chaleur dans le travail effectué par la déformation de cisaillement dans la
couche viscoélastique. Par ailleurs, les couches étant plus fines que pour les patchs
FLD, elle représente un gain de poids certain par rapport à la FLD, et est donc plus
recommandée pour des utilisations aéronautiques.

La figure 1.1 présente ces deux types de patchs ainsi que leurs états déformés. La fi-
gure 1.2 illustre des applications de patchs viscocontraints dans une automobile. Nous
remarquons que dans ce cas, et dans un souci d’efficacité, les panneaux sont entiè-
rement recouverts de traitement amortissant. Cependant, nous pouvons supposer qu’il
est possible de trouver un compromis poids efficacité au travers de calculs d’optimisa-
tion. Ceci est essentiel pour les applications aéronautiques où la réduction de la masse
demeure un enjeu majeur.
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FIGURE 1.1 – (a) Patch viscoélastique non contraint dans son état non déformé en haut
et déformé en bas - (b) Patch viscoélastique contraint dans son état non déformé en haut
et déformé en bas.

FIGURE 1.2 – Exemple d’utilisation de patchs viscoelastiques.
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FIGURE 1.3 – Structure patchée avec une couche d’espacement entre le patch et la
plaque.

1.2.2/ TRAITEMENTS AMORTISSANTS DÉRIVÉS

Une partie des traitements passifs utilisés dans les avions commerciaux se limite à ap-
pliquer localement des traitements dans le fuselage, afin de réduire l’amplitude des vi-
brations. En raison des restrictions de poids, les traitements sont conçus pour maximiser
l’amortissement en limitant la masse ajoutée. Les traitements viscocontraints classiques
fonctionnent en cisaillant le matériau viscoélastique. Cependant, dans les modes de dé-
formation les plus bas, lorsque la courbure est faible, le matériau viscoélastique peut ne
pas être suffisamment cisaillé pour être pleinement efficace. Pour surmonter ce phéno-
mène, l’adjonction d’une couche d’espacement, entre le patch et la plaque sur laquelle il
est appliqué, est une solution possible à ce problème, comme illustré dans la figure 1.3.
Le matériau de cette couche d’espacement est censé, idéalement, avoir une rigidité de
cisaillement infinie et une rigidité de flexion nulle. La couche d’espacement permet d’aug-
menter la distance entre l’axe neutre de la structure de base et le système d’amortisse-
ment. Selon Rao [Rao2003 ], cette couche agit donc comme un amplificateur cinéma-
tique afin d’augmenter de manière significative les déformations de cisaillement dans la
couche viscoélastique et donc l’efficacité du traitement.

1.2.3/ AMORTISSEURS VISCOÉLASTIQUES ACCORDÉS

Aussi appelés Tuned Viscoelastic Dampers (TVD – amortisseurs harmoniques) ces dis-
positifs, présentés dans la figure 1.4, sont spécialement conçus pour amortir les vibra-
tions à une fréquence donnée ou dans une bande de fréquence. Le système se résume
alors à un système masse ressort amorti dont les caractéristiques ont été choisies afin
de cibler une ou plusieurs bandes de fréquences prédéterminées. Ce genre de système
est particulièrement efficace lorsqu’il est placé dans une zone où les amplitudes des
déplacements sont grandes pour la fréquence ciblée. Un autre point déterminant est la
température de fonctionnement du système, en effet, les TVD ne doivent pas opérer au-
tour de la température de transition vitreuse du matériau viscoélastique car les dispositifs
réalisés pourraient se révéler difficiles à dimensionner (les propriétés des polymères vis-
coélastiques variant fortement avec la température). Harrison [harrison_tuned_1994 ]
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FIGURE 1.4 – Amortisseur viscoélastique accordé.

propose une étude d’un système TVD sur une plaque afin d’optimiser le comportement
du patch en flexion. Pour cette étude, la nature du problème est donc différente puisque
l’étude du système en flexion implque que l’on ne considère plus un système masse-
ressort comme pour les amortisseurs viscoélastiques accordés classiques.

1.2.4/ INCORPORATION DES TRAITEMENTS AMORTISSANTS DANS LES STRUC-
TURES

De récentes applications impliquant des traitements amortissants montrent une tendance
à incorporer les traitements à l’intérieur des structures vibrantes. Ces nouvelles mé-
thodes, dont quelques exemples sont présentés par Rao [Rao2003 ], reviennent le plus
souvent à choisir une "colle intelligente" de façon à réduire les amplitudes des vibrations
de la structure. La figure 1.5 présente quelques exemples d’incorporation de matériaux
viscoélastiques dans une structure aéronautique : l’interface entre les raidisseurs et la
peau est réalisée par une couche de matériau viscoélastique. On peut aussi mention-
ner l’existence de pare-brises en "verre laminé" comme un exemple de cette tendance.
Le pare brise peut être alors considéré comme une plaque sandwich amortissante dont
l’âme est constituée de polyvinyl butyral et les peaux, de verre.

1.3/ ÉTUDES EXPÉRIMENTALES DES PATCHS VISCOCONTRAINTS

Dans ce domaine, Kerwin [edward_m._kerwin_damping_1959 ] fut parmi les premiers
à proposer une étude d’une poutre patchée, pour laquelle il etablit le facteur de perte
structurel, à partir des travaux d’Oberst. Kosmatka [kosmatka_passive_1995 ] propose
une étude sur un composite muni d’un patch viscocontraint. D’autres études expérimen-
tales ont été proposées sur des structures différentes d’une poutre ou plaque comme
celle de Kumar et Singh [kumar_experimental_2010 ] qui proposent une étude sur un
panneau courbe. De manière générale, de nombreuses études expérimentales ont été
réalisées sur les patchs viscocontraints. Cependant peu de travaux sont focalisés sur
l’aspect purement expérimental de l’étude. Le plus souvent, ces études expérimentales
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FIGURE 1.5 – Exemples de traitements amortissants intégrés à l’intérieur de la structure
d’un avion.

visent à valider certains modèles. Dans cette catégorie on pourra notamment citer les tra-
vaux de Foin [Foin1999213 ], de De Cazenove [deCazenove2012433 ] ou encore Kung
et Singh [Kung1998781 ].

1.4/ MODÈLES DE PLAQUE MULTICOUCHE

Par modèle de plaque, on entend un modèle dans lequel on effectue une approximation
de l’estimation des variables du champ de déplacement – généralement sur l’épaisseur
de la structure – destinée à modéliser le comportement d’une plaque – le plus souvent
multicouche –. Il n’est pas rare de rencontrer d’autres définitions d’un modèle de plaque,
par exemple, Carrera [carrera_theories_2002 ], définit un modèle de plaque comme un
modèle dans lequel le degré d’interpolation au travers de l’épaisseur est au moins d’un
degré inférieur à celui des autres directions.

Parmi les modèles de plaque, on distingue deux grandes familles, les modèles Equivalent
Single Layer (ESL – modèle couche équivalente) et les modèles Layer-Wise (LW – par
couche). Les modèles ESL expriment chaque composante du champ de déplacement en
fonction de variables définies sur un plan de référence, décrit par les coordonnées x et
y dans le plan, et fonction de z la direction normale au plan x, y traduit ce qui se passe
dans l’épaisseur. De manière générale, z est découplée des directions x et y. Chaque
composante des champs de déplacement, de déformation et de contrainte se développe
selon z à l’aide de P fonctions de la façon suivante :

f (x, y, z) = f1 (x, y) F1 (z) + · · · + fP (x, y) FP (z) (1.1)

De fait, le nombre de variables est alors indépendant du nombre de couches. Les fonc-
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tions Fp (z) sont généralement obtenues en posant des conditions cinématiques sur le
champ de déplacement.

Les formulations LW, quant à elles, proposent une variation des composantes du champ
de déplacement à l’intérieur de chaque couche. Les champs sont alors exprimées pour
la couche n de la façon suivante :

f n (x, y, z) = f n
1 (x, y) Fn

1 (z) + · · · + f n
P (x, y) Fn

P (z) (1.2)

Lors de la discrétisation du système, le nombre de degrés de liberté du système est alors
directement dépendant du nombre de couches. De ce fait, ce dernier type de modèle
ne peut être considéré comme une formulation strictement bidimensionnelle. Bien qu’ils
peuvent se révéler plus précis, ceux-ci impliquent souvent un plus grand nombre de de-
grés de liberté, ce qui les rend moins avantageux que les modèles ESL. Notre étude
se concentrera donc essentiellement sur les modèles de plaque ESL dont le nombre de
degrés de liberté ne dépend pas du nombre de couches.

De manière plus générale, la modélisation des plaques peut être réalisée au
travers de plusieurs méthodes admettant une ou plusieurs approximations. Plu-
sieurs travaux comme ceux de Noor [Noor1990233, noor_mechanics_1992 ],
Reddy [Reddy27493483 ] et Carrera [carrera_theories_2002 ] font l’état de l’art sur
les théories des plaques. Les paragraphes de cette section présentent un résumé des
principales méthodes.

1.4.1/ SOLUTIONS EXACTES

Même si ces solutions ne satisfont pas la définition des modèles de plaque présentée ci-
dessus (puisqu’elles n’admettent aucune approximation sur la description des variables
au travers de l’épaisseur de la plaque), il convient de les mentionner puisqu’elles sont
souvent utilisées avec les modèles de plaques à titre de comparaison. Par ailleurs, les
solutions exactes utilisées pour des plaques en flexion ne reflètent que très rarement
les "cas réels". La plupart d’entre elles impliquent des conditions aux limites simplement
appuyées et nécessitent un champ cinématique imposé à la plaque ce qui est difficile à
reproduire expérimentalement. Leur importance est cependant cruciale puisque ce sont
des méthodes exactes qui permettent le plus souvent d’évaluer la qualité des modèles
de plaques, qui eux sont basés sur des hypothèses simplificatrices.

Les premières solutions exactes furent données pour des plaques en flexion cylin-
drique composées de matériaux isotropes. Ainsi en 1877 Lévy [levy_memoire_1877
] donne une solution exacte pour les plaques isotropes rectangulaires en flexion
cylindrique. Pour les cas limités aux plaques multicouches rectangulaires simple-
ment appuyées dont les axes d’orthotropie sont confondus avec le repère de la
plaque, Pagano [pagano_exact_1969, pagano_exact_1970, pagano_influence_1970
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] présente une solution pour le cas statique et Srinivas [srinivas_flexure_1969,
srinivas_bending_1970, srinivas_exact_1970 ] et Kulkarni [kulkarni_dynamic_1972
] pour le cas dynamique. Ces solutions font partie des solutions les plus connues et les
plus employées encore à ce jour dans la littérature. Par la suite une autre méthode per-
mettant de simuler la flexion des plaques orthotropes avec un empilement de couches
symétriques a été présentée par Reddy [reddy_new_1991 ] pour le cas statique et
Noor [noor_three-dimensional_1992 ] pour le cas dynamique. Pour ces modèles ba-
sés sur les équations d’équilibre de la mécanique, aucune approximation n’est effectuée
pour l’estimation de la distribution des contraintes et des déformations.

1.4.2/ THÉORIES CLASSIQUES DES PLAQUES

À partir de ce point, tous les indices grecs prennent les valeurs 1 ou 2, les indices latins
prennent les valeurs 1, 2 ou 3. La convention de sommation d’Einstein est utilisée seule-
ment pour les indices. La virgule, utilisée dans un indice indique une dérivée partielle
pour le(s) indice(s) qui la suive(nt).

Dans la littérature, plusieurs modèles, qualifiés de modèles de plaque classiques sont
souvent cités et utilisés à des fins de comparaison. Nous en faisons ici une brève des-
cription :
– La CLT (Classical Lamination Theory – théorie classique des stratifiés). Ce mo-

dèle est la généralisation pour des matériaux anisotropes du modèle de Love-
Kirchhoff [kirchhoff_uber_1850, kirchhoff1850schwingungen, Love1888 ]. Cette
théorie ne tient pas compte du cisaillement transverse et suppose que les déplace-
ments de membrane, en tout point de la plaque, sont uniquement dépendants des dé-
placements de membrane u0

1, u0
2, et des dérivées de la flèche w0

,α au plan de référence
(l’exposant 0 indique que la variable est exprimée au plan de référence). Le champ
de déplacement associé est présenté dans l’équation (1.3). La figure 1.6 illustre l’état
déformé d’une structure monocouche avec le modèle de Love-Kirchhoff : la section de
la poutre déformée reste orthogonale à l’axe neutre, les contraintes et déformations de
cisaillement transverse sont nulles. Cette formulation a tendance à sous-estimer les
flèches et sur-estimer les fréquences propres des structures modélisées, cette erreur
étant encore plus grande pour les stratifiés fortement anisotropes. Cependant, ce mo-
dèle permet de décrire correctement le comportement de plaques simples fortement
élancées ou avec une épaisseur faible par rapport à la longueur d’onde de flexion, d’où
son appellation de modèle de "plaques minces".

uα(x, y, z) = u0
α(x, y) − zw0

,α(x, y)

w(x, y, z) = w0(x, y)

(1.3a)

(1.3b)

– La FSDT (First-Order Shear Deformation Theory – théorie de déformation en cisaille-
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FIGURE 1.6 – Paramètres géométriques d’une structure monocouche avec le modèle de
Love-Kirchhoff.
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FIGURE 1.7 – Paramètres géométriques d’une structure monocouche avec le modèle de
Mindlin-Reissner.

ment au premier ordre). Aussi appelé modèle de Mindlin-Reissner ou encore "théorie
des plaques épaisses", ce modèle pose pour hypothèse une déformation de cisaille-
ment transverse constante au travers de l’épaisseur de la plaque, le déplacement d’un
point de la plaque dépend cette fois de u0

1, u0
2, des dérivées de la flèche w0

,α et des
cisaillements γ0

α3. L’équation (1.4) présente le champ de déplacement associé à ce
modèle. Celui-ci, développé par Reissner [reissner1945effect ], fut le premier mo-
dèle de plaque prenant en compte les contraintes de cisaillement transverse ; Mind-
lin [mindlin1951influence ] développa la théorie de déformation en cisaillement au
premier ordre basé sur les déplacements.

uα(x, y, z) = u0
α(x, y) + z

(
γ0
α3(x, y) − w0

,α(x, y)
)

w(x, y, z) = w0(x, y)

(1.4a)

(1.4b)

Le plus souvent, le champ de déplacement lié à la FSDT est écrit en fonction des
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rotations φ0
α(x, y) = γ0

α3(x, y) − w0
,α(x, y). Il est donc commun de rencontrer le champ de

déplacement associé sous la forme suivante :

uα(x, y, z) = u0
α(x, y) + zφα

w(x, y, z) = w0(x, y)

(1.5a)

(1.5b)

– La HSDT (Higher-order Shear Deformation Theory – théorie de déformation en ci-
saillement d’ordres supérieurs). Initialement développé par Reddy [Reddy1984 ], ce
modèle, reprenant les bases de la théorie de déformations en cisaillement au premier
ordre, impose une variation des déformations de cisaillement transverse selon un poly-
nôme du troisième ordre permettant aux contraintes de cisaillement transverses d’être
nulles aux limites supérieures et inférieures du stratifié. La formulation proposée par
Reddy implique donc le champ de déplacement suivant :

uα(x, y, z) = u0
α(x, y) − zw0

,α(x, y) +

(
z −

4z3

3h2

)
γ0
α3(x, y)

w(x, y, z) = w0(x, y)

(1.6a)

(1.6b)

pour un stratifié défini entre −h/2 et h/2 avec h l’épaisseur totale du stratifié. Ce modèle
est particulièrement efficace pour modéliser la flexion de plaques isotropes.

1.4.3/ MODÈLES DE PLAQUE ZIG-ZAG

Selon Carrera [carrera_use_2004 ], les structures multicouches font apparaitre un
champ de déplacement continu par morceaux au travers de l’épaisseur du stratifié. Le
changement de pente d’une variable du champ de déplacement entre deux couches
considérées parfaitement liées est connu sous le nom d’effet Zig-Zag (ZZ). Cet ef-
fet est du aux conditions de continuité interlaminaires des contraintes de cisaillement
transverse. Cette théorie a donné lieu à plusieurs modèles ESL ou encore LW. Parmi
les modèles ESL ceux-ci sont divisés par Carrera [Carrera2003 ] en tant que Lekh-
nitskii multilayered theory [lekhnitskii_anisotropic_1968 ] (LMT – théorie multicouche
de Lekhnitskii) et Ambartsumian multilayered theory [ambartsumian_fragments_1991
] (AMT – théorie multicouche de Ambartsumian) qui toute deux imposent des condi-
tions de continuité des contraintes de cisaillement transverse, comme proposé par Whit-
ney [whitney_higher_1973 ]. Le modèle Reissner multilayered theory (RMT – théo-
rie de Reissner multicouche) fait quand à lui appel à des hypothèses de déplace-
ments et de contraintes de cisaillement transverse indépendantes. Dans la continuité
des modèles RMT, Murakami [murakami_laminated_1986 ] propose un jeu de fonc-
tions polynomiales simples capables d’émuler l’effet ZZ. Plusieurs travaux ont ensuite
suivi ceux de Murakami, parmi les plus récents, on peut notamment citer ceux de De-
massi [demasi_refined_2005 ] qui propose des fonctions Zig-Zag d’ordre plus élevées,
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et de Brischetto [brischetto_improved_2009 ] qui réalise une étude sur des panneaux
sandwichs basée sur des fonctions Zig-Zag.

Il convient aussi de mentionner dans la catégories des modèles ZZ les articles de
Pai [Pai1995 ] et de Kim [kim_enhanced_2006 ] qui proposent deux autres fonctions
polynomiales par morceaux (un polynôme pour chaque couche) de description de la
déformation de cisaillement transverse permettant la description de la répartition du ci-
saillement au travers de l’épaisseur du stratifié. Tout deux respectent les conditions de
contraintes nulles aux limites supérieures et inférieures du stratifié ainsi que la conti-
nuité des contraintes aux interfaces. Les fonctions en résultant sont alors une série de
polynômes du troisième ordre, continus entre chaque couche, permettant d’assurer les
conditions de continuité requises.

1.4.4/ FORMULATIONS UNIFIÉES

Le nombre de modèles de plaques devenant croissants, plusieurs auteurs ont ten-
tés de proposer des formulations unifiées permettant de réécrire les principaux mo-
dèles de plaque. La plus connue de ces formulations est la Carrera Unified Formula-
tion [carrera_unified_2005 ] (CUF - formulation unifiée de Carrera). Cette formulation
permet, en exprimant chaque variable comme présentée dans les équations (1.1) et (1.2),
de décrire les modèles respectivement ESL et LW. Cependant, la plupart des travaux
faisant référence à la CUF limitent les fonctions Fi(z) à des puissances de z ou des po-
lynômes de Legendre. Par ailleurs, même si la plupart des modèles de plaques peuvent
s’exprimer par rapport à la CUF, cette formulation en elle même n’est pas directement un
modèle de plaque.

1.4.5/ MODÉLISATION DE L’AMORTISSEMENT

De manière générale, le terme amortissement regroupe deux familles de phénomènes
distincts :
– L’amortissement propre aux matériaux, très présent dans les matériaux polymères,

est généralement dû à un comportement viscoélastique de ceux-ci. C’est à dire que
les contraintes sont reliées au déformations non seulement par le module de Young,
mais aussi par une constante d’amortissement liée au temps. En d’autres termes, les
matériaux viscoélastiques ont une capacité à dissiper l’énergie, caractérisée par leur
facteur de perte η.

– L’amortissement de la structure en elle même porte lui sur les frottement des pièces
d’une structure les une avec les autres.

Pour cette étude, les assemblages des structures étudiées étant réputés parfait, notre
modèle se limitera à la modélisation de l’amortissement propre au matériau. La modéli-
sation de ce phénomène est réalisée avec l’aide de modèles rhéologiques. Nous faisons
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FIGURE 1.8 – Modèle de Kelvin-Voigt.

FIGURE 1.9 – Modèle de Maxwell.

ici une liste des modèles rhéologiques les plus connus :
– Le modèle de Kelvin-Voigt est représenté par un amortisseur purement visqueux

et un ressort hookéen mis en parallèle comme illustré dans la figure 1.8. Il permet
de simuler à la fois les propriétés élastiques et visqueuses d’un matériau ainsi que
le fluage mais ne permet cependant pas de prendre en compte les effets tels que la
relaxation de contraintes, ou encore l’endommagement.

– Le modèle de Maxwell est représenté par ressort hookéen et un amortisseur en série
(figure 1.9). Ce modèle permet de prendre en compte la relaxation de contraintes, mais
pas l’amortissement hystérique ou le fluage.

– Le modèle de Zener est composé d’un ressort hookéen et d’un modèle de Maxwell
en parallèle (figure 1.10). Ce modèle combine les aspects du modèle de Maxwell et de
Kelvin-Voigt et permet de prendre en compte la relaxation de contraintes et le fluage
mais reste plus complexe à mettre en œuvre.

– Le modèle de Burger consiste en un modèle de Maxwell et un modèle de Kelvin-Voigt
mis en série (figure 1.11). Ce modèle combine lui les aspects du modèle de Maxwell et
de Kelvin-Voigt et possède les même capacités de simulation mais possède un élément

FIGURE 1.10 – Modèle de Zener.
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FIGURE 1.11 – Modèle de Burger.

supplémentaire.

Plus généralement, le choix d’un modèle analogique constitué d’un ensemble de ressorts
et d’amortisseurs revient à exprimer une loi de comportement qui lie une composante de
la contrainte à une composante de la déformation par des opérateurs linéaires P et Q de
la forme :

Pσ = Qε. (1.7)

Cette démarche est décrite par Williams [Williams_Structural_1964 ] et
Ferry [Ferry_Viscoelastic_1970 ]. En régime harmonique, cela revient à exprimer
le module de Young complexe comme une fraction polynomiale :

Ẽ(ω) =
P̃(ω)
Q̃(ω)

(1.8)

Cette étude, étant appliquée au domaine des vibration, les chargements sont donc cy-
cliques, le modèle de Kelvin-Voigt est choisi afin de modéliser le comportement viscoélas-
tique des matériaux. L’implémentation de ce modèle est réalisée à l’aide d’un module de
Young complexe. En effet, pour ce modèle, les contraintes σ(t) à un instant t dépendent
du temps et s’expriment en fonction des déformations ε(t) :

σ(t) = Eε(t) + ηv dε(t)
dt

(1.9)

où E est le module de Young et ηv est le coefficient de viscosité du matériau associé.

Sur un système vibratoire, les variables étant exprimées sous forme complexe (ε̃(t) =

ε exp( jωt + ϕ
′′

)), les contraintes s’écrivent alors :

σ̃(t) = σ exp( jωt + ϕ
′

) (1.10)

= ε exp( jωt + ϕ
′′

)
(
E + jηvω

)
(1.11)

On peut alors choisir d’exprimer un module de Young complexe Ẽ = E + jηvω le sym-
bole ~ désignant une quantité complexe. Ceci permet alors d’écrire la loi de Hooke pour
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des grandeurs complexes (contraintes, déformations et module de Young) :

σ̃(ω) = Ẽ(ω)ε̃(ω) (1.12)

Il ne faut cependant pas confondre coefficient de viscosité et facteur de perte. En effet,
dans la littérature, les deux quantités sont souvent notées η. Dans ce document, nous
distinguerons ηv, le coefficient de viscosité et η le facteur de perte, aussi noté tan (δ) défini
de la façon suivante :

η (ω) = tan (δ (ω)) =
Im

(
Ẽ (ω)

)
Re

(
Ẽ (ω)

) = ηvω (1.13)

La prise en compte de l’amortissement dans les poutres peut être implémentée
via des méthodes diverses et plusieurs travaux ont été rédigés sur le sujet. DiTa-
ranto [ditaranto_theory_1965 ] propose un modèle prenant en compte l’amortissement
sur une poutre permettant d’obtenir une équation différentielle complexe du sixième
ordre de vibration de la poutre amortie. Mead et Markus [mead_forced_1969 ] pro-
posent une série de solutions pour cette équation avec des conditions aux limites don-
nées. Yan et Dowel [yan_governing_1972 ] proposent une équation de vibration des
poutres ou des plaques sandwich non symétriques. Mead [mead_comparison_1982
] propose une comparaison des équations de modèles présentés précédemment.
Rao [rao_frequency_1978, rao_dynamic_1993 ] résout par la suite pour des poutres
et des plaques avec différentes conditions aux limites le problème des calculs de fré-
quences propres amorties et le calcul du facteur de perte associé.

1.5/ MÉTHODES DE DISCRÉTISATION ADAPTÉES AUX MODÈLES DE

PLAQUE

Bien qu’indépendante du modèle en lui-même, la méthode de discrétisation choisie pour
la simulation d’une structure ne reste pas moins essentielle. Les résultats obtenus sont
issus d’un couple modèle cinématique-méthode de discrétisation. La qualité des résul-
tats obtenus peut aussi être étroitement liée à la méthode de discrétisation choisie. En
effet, certaines méthodes (comme par exemple la procédure de Navier) sont capables
de fournir un champ cinématique proche de la solution. Ceci permet alors d’obtenir des
résultats de très bonne qualité avec un système de taille réduite.

Par ailleurs le choix de la méthode de discrétisation est généralement étroitement lié au
cas étudié. Par exemple, dans sa version classique, la méthode de Rayleigh-Ritz pour les
modèles de plaque n’est pas adaptées aux structures non rectangulaires. Par opposition,
la méthode des éléments finis, avec un choix judicieux de formulation de l’élément permet
de modéliser des structures bien plus complexes. La méthode de discrétisation est donc
un élément essentiel de la simulation. Nous proposons ici trois méthodes de discrétisation
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adaptées à notre modèle de plaque permettant de répondre à différents problèmes.

1.5.1/ PROCÉDURE DE NAVIER

Il convient dans un premier temps de mentionner l’existence d’une méthode de discrétisa-
tion qui, sous certaines conditions, est exacte. Cette méthode est similaire à celle utilisée
dans la plupart des solutions exactes mentionnées dans la section 1.4.1 à la différence
qu’elle est applicable à un modèle de plaque. Nous choisissons ici de nous référer à cette
méthode par le terme générique de procédure de Navier [navier1823extrait ]. Cette mé-
thode est adaptée à des cas de chargement particuliers : c’est à dire que chaque variable
est projetée sur une fonction d’une base trigonométrique adaptée. Dans sa version la plus
classique, cette méthode est utilisée pour simuler une plaque rectangulaire simplement
appuyée chargée avec une pression de forme sinusoïdale ; la déflection associée est
alors supposée sinusoïdale. Les autres degrés de liberté sont exprimés sur une base
trigonométrique correspondante. Cette méthode est très utilisée puisque la qualité des
résultats obtenus est uniquement liée à la qualité du modèle cinématique et non à la
méthode de discrétisation.

Cette méthode peut être adaptées à un grand nombre de cas d’étude, et est commu-
nément implémentée dans le but de tester un modèle. Parmi les travaux sur la flexion
des plaques, on peu notamment citer ceux de Lett [lett1942bending ] qui présentent
une application de la méthode aux plaques soumises à de larges déformations. Dans
un premier temps, uniquement réservée aux stratifiés dont les matériaux constituants
ont les axes d’orthotropie confondus avec le repère, la méthode a été étendue aux
problèmes dynamiques et aux stratifiés avec une séquence d’empilement antisymé-
trique [Khdeir1988437 ].

Par ailleurs, les solutions exactes présentées dans la section 1.4.1 se basent aussi sur
ces méthodes de discrétisation.

Tout comme pour les solutions exactes, ces méthodes, bien que très utiles pour évaluer
la qualité d’un modèle, ne permettent en aucun cas le calcul de cas pratiques. En effet,
le fait d’imposer une condition aux limites simplement appuyée sur tout le pourtour de
la plaque revient à imposer un déplacement sinusoïdal sur la flèche. Elles sont donc
réservées à l’étude de cas académiques.

1.5.2/ MÉTHODE DE RAYLEIGH-RITZ

La méthode de Rayleigh-Ritz permet, en projetant les déplacements sur une base don-
née, d’implémenter un modèle pour la simulation de plaques rectangulaires soumises
à des conditions aux limites et des chargements variés. Le principal avantage de cette
méthode réside dans le fait que, avec un choix de base de projection adapté, les dé-
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rivées – successives – des fonctions de la base sont simples à obtenir, et par consé-
quent, cette méthode est tout à fait adaptée aux modèles nécessitant le calcul des
dérivées multiples de la base. La qualité des résultats obtenus est souvent relative au
choix de la base. Parmi celles-ci, nous pouvons mentionner la base présentée par Bes-
lin [Beslin1997633 ] qui est particulièrement adaptée au calculs de vibration pour di-
verses conditions aux limites. Cette méthode, classiquement employée en vibration, a été
utilisée par Plessy [plessy_comportement_2009 ] et Loredo [Loredo2011 ] pour modé-
liser une plaque munie d’un ou plusieurs patchs amortissants. Pour ces études, Plessy et
Loredo ont implémenté le modèle de Woodcock [woodcock_generalized_1995 ] avec la
méthode de Rayleigh-Ritz, couplé à différents indicateurs vibroacoustiques afin de mo-
déliser l’effet de différentes configurations de patchs PCLD.

1.5.3/ MÉTHODE DES ÉLÉMENTS FINIS

La méthode des éléments finis a progressivement fait son apparition depuis les années
1950. C’est une méthode qui permet la résolution numérique des équations aux dérivées
partielles. Couplée à des modèles physiques, elle est couramment utilisée comme mé-
thode de discrétisation afin de simuler le comportement de structures complexes proches
de cas pratiques. Les principes généraux de la méthode ainsi qu’un certain nombre de
raffinements sont regroupés dans le livre de Zienkiewicz [zienkiewicz_finite_2000 ].

L’utilisation de cette méthode, très répandue dans la milieu industriel, a cependant cer-
taines limites pour des modèles faisant intervenir des dérivées successives des variables.
En effet, au contraire de la méthode de Navier ou de Rayleigh-Ritz, l’utilisation des dérivés
multiples des fonctions de formes nécessitent l’implémentation d’éléments dont les déri-
vées des fonctions de forme sont continues entre les éléments. Ce type d’élément, pré-
senté par la suite dans la section 3.3, est beaucoup plus complexe à implémenter et reste
assez peu utilisé. Une autre limite de la méthode des éléments finis est le verrouillage
des plaques en cisaillement. En effet, certains modèles de plaques nécessitent un degré
d’interpolation inférieur pour les cisaillements transverses par rapport à la flèche. Cette
contrainte, bien que théoriquement mineure, peut aussi rendre l’implémentation de ces
modèles de plaque plus complexe.

1.6/ OPTIMISATION DE L’AMORTISSEMENT DANS UNE STRUCTURE

PATCHÉE

L’optimisation du dimensionnement des traitements amortissants viscocontraints est une
des finalités de la modélisation de ceux-ci. Dans le but de maximiser leur efficacité et de
limiter l’ajout de masse au système, un travail d’optimisation est nécessaire.

Nous pouvons tout d’abord citer les travaux de Lifshitz [lifshitz_optimal_1987 ] traitant
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du rapport d’épaisseurs optimal entre la couche de matériau viscoélastique et la couche
de contrainte pour un sandwich. Cette étude peut être étendue aux plaques complète-
ment recouvertes de patchs amortissants puisque ces structures peuvent également être
considérées comme des sandwich asymétriques.

Dans les cas pratiques et pour des raisons de limitations de la masse, il est rare
qu’une structure soit complètement recouverte, il est donc nécessaire d’optimiser la
taille et l’emplacement des patchs. Lors du recouvrement partiel d’une plaque de dis-
positifs amortissants, tels que ceux présentés dans la section 1.2.1, un choix perti-
nent de la taille et la position des patchs permet de maximiser l’amortissement des
amplitudes vibratoires. Or, aucune règle générale de dimensionnement des patchs
n’est établie à ce jour, et de nombreux travaux mettant en œuvre une grande variété
de méthodes d’optimisation ont été publiés. Plunkett et Lee [plunkett_length_1970 ]
furent parmi les premiers à proposer une optimisation de la dimension de patchs sur
une poutre. Ils proposent de couper la couche de contrainte en plusieurs sections,
la taille de ces section dépendant de la rigidité totale de la poutre. Nokes et Nel-
son [nokes_constrained_1968 ] furent parmi les premiers à chercher à optimiser l’amor-
tissement d’une poutre partiellement recouverte. Cette étude montre que pour certains
cas, l’amortissement maximum n’est pas nécessairement obtenu avec un recouvrement
total de la poutre. Zheng [zheng_optimization_2004 ] propose une minimisation de
l’énergie vibratoire à l’aide d’un algorithme génétique pour une poutre munie d’un seul
patch. Zheng [Zheng2006 ] présente par la suite, une comparaison de quatre algorithmes
d’optimisation : une approximation par la méthode des sous-problèmes, une méthode
d’optimisation du premier ordre, un algorithme séquencé quadratique, et un algorithme
génétique. D’autres algorithmes, tels qu’une méthode basée sur des gradients dévelop-
pée par Lee [Lee2008 ] ou encore Alvelid [Alvelid2008 ] et un automate cellulaire pro-
posé par Chia [Chia2008, Chia2009 ], ont étés implémentés ; quoi qu’il en soit, les ré-
sultats apportés par ces algorithmes n’ont pas permis d’apporter de solution générale au
problème du recouvrement partiel des plaques.

Comme suggéré par Perry [perry_modified_2006 ], il est donc possible de séparer les
algorithmes d’optimisation en deux catégories distinctes : ceux basés sur des principes
mathématiques rigoureux tels que la méthode des gradients conjugués, et les méthodes
non usuelles basées sur des concepts heuristiques tels que les algorithmes génétiques.

La principale limite des méthodes heuristiques est généralement leur coût de calcul
élevé : la plupart d’entre eux nécessitent de nombreux calculs sur différentes configu-
rations avant de converger vers une solution. L’intérêt d’un modèle de plaque permettant
le calcul des structures patchées prend alors tout son sens : les modèles de plaques ca-
pables de simuler de façon précise avec un nombre de degrés de liberté limité permettent
de minimiser le coût d’utilisation de tels algorithmes.

Cette première catégorie d’algorithme, bien que très efficace sur des problèmes simples,
peut se heurter à divers problèmes lorsque le nombre de variables à optimiser est impor-
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tant. Le principal problème étant que l’algorithme peut converger sur un minimum local
sans trouver la solution optimale au problème.

Enfin, la plupart des études réalisées à ce jour font appel à des modèles de plaque
(ou de poutre) simplifiés n’utilisant pas de description fine du cisaillement et limitant par
conséquent la capacité de ces algorithmes à obtenir des résultats satisfaisants.

1.7/ CONCLUSION

Les éléments présentés dans cette section montrent de récentes tendances qui im-
pliquent de nombreux changements dans les méthodes de calculs. D’une part, les as-
semblages, qui étaient jusqu’à présent composés de matériaux isotropes, deviennent
des assemblages complexes, incorporant des matériaux avec et des propriétés forte-
ment anisotropes. Les besoins de modélisation des structures évoluent fortement, et bien
que la plupart des problèmes soient théoriquement résolvables avec des méthodes tri-
dimensionnelles et que les capacités de calculs des ordinateurs modernes soient très
importantes, les modèles de plaques posés sur des hypothèses cinématiques restent
indispensables pour permettre le calcul sur de larges structures ou encore l’utilisation
d’algorithmes d’optimisation tels que les algorithmes génétiques.



2
MODÈLE ÉTABLI SUR LA BASE DU

CHAMP DE DÉPLACEMENTS

Ce chapitre présente un modèle ESL générique permettant de décrire le comportement
d’une plaque multicouche composée de plusieurs plis orthotropes admettant une varia-
tion de la déformation cisaillement transverse au travers de l’épaisseur. La variation de la
déformation de cisaillement transverse est décrite au moyen d’un jeu de fonctions appe-
lées warping functions (fonctions de description du cisaillement transverse). Le principal
avantage de cette formulation est sa souplesse : en effet, différents jeux de warping func-
tions peuvent être implémentés, permettant ainsi de mettre en œuvre différents modèles.
Ceci confère à cette formulation une capacité à reproduire les champs cinématiques
d’autres modèles, permettant ainsi de retrouver les formulations de plaques classiques
(notamment la FSDT et HSDT), les modèles issus de littérature fonctionnant à l’aide de
warping functions, ainsi que de proposer et d’implémenter de manière aisée d’autres
jeux de fonction. Du fait de sa polyvalence, ce modèle sera celui utilisé tout au long de
ce document ; seuls les warpings functions varient. Le modèle, sous sa forme actuelle,
est celui décrit en détails par Loredo [Loredo2011 ]. Toutefois certaines publications an-
térieures [nayak_free_2002, kim_enhanced_2006 ] comprenant des warpings functions
utilisent un modèle similaire sans expliciter le champ de déplacements associé ou une
formulation claire permettant de les implémenter.

Les sections 2.1 à 2.6 présentent le modèle, son champ de déplacements ainsi que les
équations d’équilibre associées. La section 2.7 présentent différents jeux de Warping
Functions permettant de formuler plusieurs modèles dont les modèles classiques FSDT
et HSDT (il a été choisi d’ignorer les modèles de Love-Kirchhoff puisque celui-ci ne décrit
pas de cisaillement transverse).
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2.1/ DÉFINITION D’UN STRATIFIÉ

Pour un stratifié composé de N couches, toutes les quantités sont exprimées au plan de
référence, où par convention z = 0. Classiquement, les modèles de plaques positionnent
les stratifiés entre h/2 et −h/2, où h est la hauteur totale du stratifié, et le plan milieu est
plan de référence ; la présente formulation se veut souple et permet de choisir le plan de
référence. On pourra donc choisir de prendre comme plan de référence, selon les cas :
– le plan milieu du stratifié,
– le plan milieu d’une couche de référence,
– un autre plan choisi de manière arbitraire.

Cette souplesse permet notamment l’étude de plaques inhomogènes, par exemples
celles équipées de patchs viscocontraints comme présenté dans la section 1.2.1. On
remarque qu’il est donc possible d’ajouter des couches au dessous de la couche
de référence. Par ailleurs, afin de pouvoir formuler les warpings functions de cer-
taines formulations (notamment celles de Woodcock [woodcock_generalized_1995,
woodcock_free_2008 ], Pai [Pai1995 ] et Kim [kim_enhanced_2006 ]), lorsque le plan
de référence est choisi à l’interface de deux couches, il faut attribuer le plan de référence
à une couche donnée.

Les valeurs des variables au plan de référence sont notées avec un exposant 0. La fi-
gure 2.1 illustre les définitions suivantes :
– z` est l’excentrement du plan milieu de la couche ` par rapport au plan de référence.
– la `ième couche a une hauteur h` et est située entre les élévations ζ` et ζ`+1, d’où

h` = ζ`+1 − ζ`.

2.2/ GÉNÉRALITÉS SUR LE CHAMP DE DÉPLACEMENTS

Le champ de déplacements de chaque point s’écrit comme suit :

uα(x, y, z) = u0
α(x, y) − zw0

,α(x, y) + ϕαβ(z)γ0
β3(x, y)

w(x, y, z) = w0(x, y)

(2.1a)

(2.1b)

où l’exposant 0 représente les quantités de la couche de référence. Les variables u0
1, w0,

w0
,1 et γ0

13 sont représentées dans la figure 2.1.

La méthode choisie pour décrire cette variation de la déformation de cisaillement trans-
verse au travers de l’épaisseur est d’utiliser la dérivée d’une Warping Function qui établi
le lien de proportionnalité entre le cisaillement sur le plan de référence et la valeur du
cisaillement en tout point de l’épaisseur de la plaque. Ceci pose donc l’hypothèse que,
puisque ϕαβ,3(z) ne dépend pas des coordonnées x et y, la variation du cisaillement au
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FIGURE 2.1 – Paramètres géométriques de la structure multicouche (présentée à gauche
dans un état non déformé) et définition des déplacements.

travers de l’épaisseur de la plaque est constante quelque soit x et y.

γα3(x, y, z) = ϕαβ,3(z)γ0
β3(x, y) (2.2)

et on choisira donc :
ϕαβ,3(0) = δK

αβ (2.3)

L’intégrale de la dérivée de la warping function
∫ z
ζ0
γα3,3(z)dz permet de retrouver l’angle

du à la déformation de cisaillement. Les conditions cinématiques imposées par le champ
de déplacement de l’équation (2.1) nous permettent d’écrire :

ϕαβ(0) = 0 (2.4)

Le champ de déplacements en tout point de la plaque est ensuite décrit par l’équation
(2.1) et ne dépend plus que des cinq paramètres de la couche de référence : u0

1, u0
2 w0

3, γ0
13

et γ0
23.
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2.3/ CHAMPS DE DÉFORMATIONS ET DE CONTRAINTES

Le champ de déformations issu de l’équation (2.1) s’écrit :

εαβ(x, y, z) = ε0
αβ(x, y) − zw0

,αβ(x, y) +
1
2

(
ϕαγ(z)γ0

γ3,β(x, y) + ϕβγ(z)γ0
γ3,α(x, y)

)
εα3(x, y, z) =

1
2
ϕ′αβ(z)γ0

β3(x, y)

ε33(x, y, z) = 0

(2.5a)

(2.5b)

(2.5c)

On remarque que les ε0
αβ, w0

,αβ, γ
0
γ3,β et γ0

β3 forment un jeu de 12 variables généralisées
indépendantes que l’on considère pour ce modèle.

Afin de réduire la relation contraintes-déformations à cinq variables comme pour tout
modèle de plaque classique, on suppose un état de contraintes planes généralisées dans
la structure. Cela revient donc à poser pour hypothèse que σ33(x, y, z) = 0. On élimine
alors ε33 pour obtenir la loi de Hooke modifiée :

σ11(z)
σ22(z)
σ23(z)
σ13(z)
σ12(z)


=



Q1111(z) Q1122(z) 0 0 Q1112(z)
Q1122(z) Q2222(z) 0 0 Q2212(z)

0 0 C2323(z) C1323(z) 0
0 0 C1323(z) C1313(z) 0

Q1112(z) Q2212(z) 0 0 Q1212(z)





ε11(z)
ε22(z)
γ23(z)
γ13(z)
γ12(z)


(2.6)

où Qαβγδ sont les rigidités de contraintes planes généralisées avec

Qαβδγ = Cαβδγ −
Cαβ33C33γδ

C3333
(2.7)

De même il est possible d’évaluer ε33 résultant de l’effet Poisson avec :

ε33 = −
Cαβ33

C3333
εαβ (2.8)

Avec l’aide des équations (2.5) et (2.6), il est ensuite possible d’écrire le champ de
contrainte à partir des 12 variables généralisées citées plus haut.


σαβ(x, y, z) = Qαβγδ(z)

(
ε0
γδ(x, y) − zw0

,γδ(x, y) + ϕγµ(z)γ0
µ3,δ(x, y)

)
σα3(x, y, z) = Cα3β3ϕ

′
βµ(z)γ0

µ3(x, y)

σ33(x, y, z) = 0

(2.9a)

(2.9b)

(2.9c)

La disparition du terme 1/2 de l’équation (2.5a) dans l’équation (2.9a) n’est pas évidente. La
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démonstration, en omettant les x, y, et z, est la suivante :

1
2

Qαβγδ

(
ϕγµγ

0
µ3,δ + ϕδµγ

0
µ3,γ

)
=

1
2

Qαβγδϕγµγ
0
µ3,δ +

1
2

Qαβγδϕδµγ
0
µ3,γ

=
1
2

Qαβγδϕγµγ
0
µ3,δ +

1
2

Qαβδγϕγµγ
0
µ3,δ (2.10)

= Qαβγδϕγµγ
0
µ3,δ

2.4/ ÉNERGIE DE DÉFORMATION

Il est possible de calculer la densité d’énergie de déformation J = 1/2εi jσi j à partir des
formules (2.5) et (2.9) intégrées au travers de l’épaisseur pour obtenir une densité d’énergie
de déformation surfacique J(x, y) :

J =
1
2

∫ ζn

ζ0

εi jσi jdz (2.11)

On remplace par le champ de déplacement et on rappelle que avec les hypothèses de
contraintes planes σ33 = 0.

J =
1
2

∫ ζn

ζ0

(
εαβσαβ + 2εα3σα3 + ε33σ33

)
dz

=
1
2

∫ ζn

ζ0

[(
ε0
αβ − zw0

,αβ +
1
2

(
ϕαγ(z)γ0

γ3,β + ϕβγ(z)γ0
γ3,α

))
σαβ + 2

1
2
ϕ′αβ(z)γ0

β3σα3

]
dz

=
1
2

∫ ζn

ζ0

[(
ε0
αβ − zw0

,αβ + ϕαγ(z)γ0
γ3,β

)
σαβ + ϕ′αβ(z)γ0

β3σα3
]
dz (2.12)

Ce qui peut aussi être réécrit :

J =
1
2

[
ε0
αβNαβ − w0

,αβMαβ + γ0
γ3,βPγβ + γ0

β3Qβ

]
(2.13)

avec les quantités suivantes que sont les forces généralisées :
{Nαβ,Mαβ, Pγβ} =

∫ ζn

ζ0
{1, z, ϕαγ(z)}σαβ(z)dz

Qβ =

∫ ζn

ζ0
ϕαβ,3(z)σα3(z)dz

(2.14a)

(2.14b)

Chaque force généralisée est associée à un déplacement généralisé dans la formule de
l’énergie de déformation dans l’équation (2.13).

Nαβ et Mαβ sont respectivement les forces de membranes et les moments de courbure,
et Pαβ Qα sont des moments spécifiques associés aux warping functions, i. e. associés
au comportement de cisaillement transverse. On remarque que Pαβ , Pβα ce qui, dans le
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cas général, donne un jeu de 12 forces généralisées.

On remarque que dans le cas d’une plaque patchée, et donc inhomogène sur le plan
(x, y), les bornes d’intégration ζ0 et ζn peuvent varier en fonction de la présence d’un
patch ou non.

Les calculs des forces généralisées obtenues à partir des équations (2.9) et (2.14) donnent :



Nαβ = Aαβγδε0
γδ + Bαβγδ(−w0

,γδ) + Eαβµδγ
0
µ3,δ

Mαβ = Bαβγδε0
γδ + Dαβγδ(−w0

,γδ) + Fαβµδγ
0
µ3,δ

Pαβ = Eγδαβε
0
γδ + Fγδαβ(−w0

,γδ) + Gαβµδγ
0
µ3,δ

Qα = Hα3β3γ
0
β3

(2.15a)

(2.15b)

(2.15c)

(2.15d)

où les rigidités généralisées suivantes ont été introduites :
{Aαβγδ, Bαβγδ,Dαβγδ, Eαβµδ, Fαβµδ,Gνβµδ} =

∫ ζn

ζ0
Qαβγδ{1, z, z2, ϕγµ(z), zϕγµ(z), ϕαν(z)ϕγµ(z)}dz

Hα3β3 =

∫ ζn

ζ0
ϕγα,3(z)Cγ3δ3ϕδβ,3(z)dz

(2.16a)

(2.16b)

L’obtention des Nαβ et Mαβ est directe, mais une attention particulière doit être apportée
au calcul des Pαβ :

Pαβ =

∫ ζn

ζ0
ϕµα(z)σµβ(z)dz

=

∫ ζn

ζ0
ϕµα(z)Qµβγδ(z)

(
ε0
γδ − zw0

,γδ + ϕγν(z)γ0
ν3,δ

)
dz

= Eγδαβε
0
γδ + Fγδαβ(−w0

,γδ) + Gαβµδγ
0
µ3,δ (2.17)

Dans cette dernière expression, les Eγδαβ et Fγδαβ sont identifiés avec l’aide de la symétrie
majeure du tenseur Qµβγδ(z).

Les tenseurs A, B et D héritent des symétries du tenseur de Hooke, une symétrie pour
chaque paire d’indice appelée petite symétrie, et la grande symétrie qui permet l’inver-
sion de deux paires d’indices, cette dernière étant reliée à l’existence de l’énergie de
déformation. Les tenseurs E et F perdent la symétrie sur la dernière paire d’indices, fai-
sant disparaitre la grande symétrie. Le tenseur G perd la symétrie sur les deux paires
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d’indices, mais garde la grande symétrie :


Pour les tenseurs A, B, D : Aβαγδ = Aαβγδ = Aγδαβ = Aγδβα

pour les tenseurs E, F : Eβαγδ = Eαβγδ , Eγδαβ , Eγδβα

pour les tenseurs G : Gβαγδ , Gαβγδ = Gγδαβ , Gδγβα

(2.18)

On dénombre donc 6 coefficients indépendants pour A, B et D, 12 pour E et F, 10 pour G,
et 3 pour H. Donc ce modèle de plaque a un total de 55 coefficients de rigidité indépen-
dants dans le cas le plus général. Il est à noter que d’autres auteurs font référence à cette
même formulation écrite sous d’autres formes [Loredo2011, woodcock_free_2008,
woodcock_generalized_1995 ]. Les forces généralisées sont alors placées dans des
vecteurs :

N =


N11

N22

N12

 M =


M11

M22

M12

 P =


P11

P22

P12

P21


Q =

Q1

Q2

 (2.19)

et il en va de même pour les déformations généralisées :

ε =


ε0

11

ε0
22

ε0
12

 κ =


−w0

,11

−w0
,22

−2w0
,12

 Γ =


γ0

13,1

γ0
23,2

γ0
13,2

γ0
23,1


γ =

γ0
13

γ0
23

 (2.20)

Les forces généralisées sont alors liées aux déformations généralisées par deux matrices
de taille 10 × 10 et 2 × 2, remplies des rigidités généralisées de l’équation (2.16) :

N
M
P

 =


A B E
B D F

ET FT G



ε

κ

Γ


{
Q

}
=

[
H

] {
γ
}

(2.21)
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2.5/ ÉNERGIE CINÉTIQUE

La densité d’énergie cinétique surfacique Ec(x, y) de la structure s’écrit :

Ec(x, y) =
1
2

∫ ζn

ζ0
ρ(x, y, z) (u̇α(x, y, z)u̇α(x, y, z) + ẇ(x, y, z)ẇ(x, y, z)) dz

=
1
2

∫ ζn

ζ0
ρ(z)

[ (
u̇0
α − zẇ0

,α + ϕαβ(z)γ̇0
β3

) (
u̇0
α − zẇ0

,α + ϕαβ(z)γ̇0
β3

)
+ (ẇ0)2

]
dz

=
1
2

∫ ζn

ζ0
ρ(z)

[
u̇0
αu̇0

α − 2zu̇0
αẇ0

,α + 2u̇0
αϕαβ(z)γ̇0

β3 + z2ẇ0
,αẇ0

,α

− 2zẇ0
,αϕαβ(z)γ̇0

β3 + ϕαβ(z)γ̇0
β3ϕαµ(z)γ̇0

µ3 + (ẇ0)2
]
dz (2.22)

Pour des raisons de simplification d’écriture, les x et y ont été enlevés dans les deux
dernières lignes de cette formule.

On voit alors que l’énergie cinétique peut s’écrire au moyen des vitesses généralisées u̇0
1,

u̇0
2, ẇ0, γ̇0

13 et γ̇0
23 et des masses généralisées :

{R, S ,T,Uαβ,Vαβ,Wαβ} =

∫ ζn

ζ0
ρ(z){1, z, z2, ϕαβ(z), ϕαβ(z)z, ϕµα(z)ϕµβ(z)}dz (2.23)

On remarque que Uαβ et Vαβ sont des tenseurs antisymétriques mais Wαβ est symétrique.
Il y a donc 14 coefficients de masse indépendants à prendre en compte. La densité sur-
facique d’énergie cinétique peut alors s’écrire :

Ec(x, y) =
1
2

(
Ru̇0

αu̇0
α − 2S u̇0

αẇ0
,α + 2Uαβu̇0

αγ̇
0
β3 + Tẇ0

,αẇ0
,α

− 2Vαβẇ0
,αγ̇

0
β3 + Wαβγ̇

0
α3γ̇

0
β3 + R(ẇ0)2

)
dz (2.24)

2.6/ ÉQUATIONS D’ÉQUILIBRE DU SYSTÈME

En négligeant les forces extérieures, et en gardant la même convention sur les indices,
les équations d’équilibre de la mécanique des milieux continus, s’écrivent :

σαβ,β + σα3,3 = ρüα

σα3,α + σ33,3 = ρü3

(2.25a)

(2.25b)

L’intégration des équations (2.25) au travers de l’épaisseur, avec l’aide des équations (2.1),
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(2.14) et (2.23) donne : 
Nαβ,β + [σα3(z)]ζ

n

ζ0 = Rü0
α − S ẅ0

,α + Uαβγ̈
0
β3

Qc
α,α + [σ33(z)]ζ

n

ζ0 = Rẅ0

(2.26a)

(2.26b)

où les Qc
α sont les efforts tranchants. Afin d’obtenir des équations supplémentaires, les

intégrales pondérées de l’équation (2.25a) au travers de l’épaisseur sont calculées. Les
fonctions de pondération sont z et ϕαγ(z). Ceci donne quatre équations supplémentaires :


Mαβ,β + [σα3(z)z]ζ

n

ζ0 − Qc
α = S ü0

α − Tẅ0
,α + Vαβγ̈0

β3

Pγβ,β + [ϕαγ(z)σα3(z)]ζ
n

ζ0 − Qγ = Uαγü0
α − Vαγẅ0

,α + Wγβγ̈
0
β3

(2.27a)

(2.27b)

Soit q = [σ33(z)]ζ
n

ζ0 la valeur du chargement sur la troisième direction. Comme on sup-
pose qu’il n’y a pas de forces tangentielles sur les plans supérieurs et inférieurs de la
plaque, donc σα3(−h/2) = σα3(h/2) = 0. On remarque qu’il n’y a pas de déformation gé-
néralisée correspondante aux efforts tranchants Qc

α. Cette déformation généralisée doit
donc être éliminée en remplaçant les valeurs de Qc

α obtenues avec la formule (2.27a) dans
l’équation (2.26b) ce qui permet d’écrire le système d’équations d’équilibre de la plaque :


Nαβ,β = Rü0

α − S ẅ0
,α + Uαβγ̈

0
β3

Mαβ,βα + q = Rẅ0 + S ü0
α,α − Tẅ0

,αα + Vαβγ̈0
β3,α

Pαβ,β − Qα = Uβαü0
β − Vβαẅ0

,β + Wαβγ̈
0
β3

(2.28a)

(2.28b)

(2.28c)

2.7/ FONCTIONS DE DESCRIPTION DU CISAILLEMENT TRANS-
VERSE : Warpings functions

Les warpings functions sont des fonctions permettant la description des déformations et
contraintes de cisaillement transverses. Ces fonctions peuvent être obtenues en formant
des polynômes (pouvant avoir un jeu de coefficients pour chaque couche) qui respectent
(2.2) et (2.3) et une ou plusieurs des conditions suivantes :
– la continuité des warping functions à chaque interface afin d’assurer la continuité des

déplacements
lim

z→ζ`−
ϕαβ(z) = lim

z→ζ`+
ϕαβ(z) (2.29)

– lors de l’intégration des ϕ
′

αβ, les constantes d’intégration sont choisies de façon à ce
que ϕαβ(0) = 0. Ce qui veut dire que le cisaillement transverse n’a pas d’effet sur le
déplacement du plan de référence.

– le respect des conditions de nullité des contraintes de cisaillement transverse aux li-
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EL (Pa) ET (Pa) GTT (Pa) GLT (Pa) νTT = νLT

25 × 106 1 × 106 2 × 105 5 × 105 0, 25

TABLE 2.1 – Propriétés des plis du stratifié utilisé pour les warping functions présentées
dans ce chapitre.

mites supérieures et inférieures implique au travers de l’équation (2.9) que les ϕ
′

αβ sont
nuls aux plans supérieurs et inférieurs du stratifié. D’où

ϕ
′

αβ(−h/2) = ϕ
′

αβ(h/2) = 0 (2.30)

– le respect de la condition de continuité de contraintes de cisaillement transverse,

lim
z→ζ`−

σα3(x, y, z) = lim
z→ζ`+

σα3(x, y, z) (2.31)

permet d’écrire une relation sur les ϕ
′

αβ. On rappelle que,

σα3(x, y, z) = 2Cα3β3(z)εβ3(x, y, z) = Cα3β3(z)ϕ
′

βγ(z)γ0
γ3(x, y) (2.32)

D’où,
lim

z→ζ`−
Cα3β3(z)ϕ′βγ(z) = lim

z→ζ`+
Cα3β3(z)ϕ′βγ(z) (2.33)

Ces warping functions sont présentées dans les sections 2.7.1 à 2.7.4.

Par ailleurs il est aussi possible d’obtenir les warping functions au travers de méthodes
alternatives parmi lesquelles on peut mentionner :
– l’utilisation de solutions analytiques,
– l’intégration sur l’épaisseur du stratifié des équations d’équilibre de la mécanique,
– l’utilisation de résultats de calculs tridimensionnels.

Ces méthodes sont détaillées dans la section 2.7.5.

A titre d’illustration, pour les sections 2.7.1 à 2.7.5, les fonctions ϕ11 et ϕ12 sont tracées
pour chaque modèle pour un stratifié composé de trois plis unidirectionnels empilés se-
lon la séquence [30/ − 30/30]. Les caractéristiques d’un pli sont présentées dans le ta-
bleau 2.1.

2.7.1/ FORMULATION CLASSIQUE : MINDLIN-REISSNER

Le modèle présenté permet d’implémenter cette théorie classique, le choix des warping
functions est alors fait de manière à ce que le champ de déplacements décrit dans l’équa-
tion (2.1) corresponde à celui de l’équation (1.4), d’où

ϕ
′

αβ = δK
αβ (2.34)
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FIGURE 2.2 – Warping functions ϕ11 et ϕ12 pour le modèle de Mindlin-Reissner pour un
stratifié compris entre −h/2 et h/2 avec z0 = 0.

2.7.2/ REDDY

Le modèle décrit par Reddy [Reddy1984 ] n’est pas habituellement décrit au moyen
de warping functions. Toutefois cette formulation, désormais classique, revient à l’appli-
cation des conditions de l’équation (2.30), traduit par un polynôme qui en plus respectera
les conditions de l’équation (2.29). En supposant que le stratifié est compris entre −h/2 et
h/2, le polynôme est alors :

ϕαβ = δK
αβ

(
z
h
−

4
3

( z
h

)3
)

(2.35)

2.7.3/ WOODCOCK

Le modèle de Woodcock [woodcock_generalized_1995 ] est basé sur les hypothèses
initiales du modèle de Sun & Whitney [Sun1973 ]. Celui-ci formule les énergies poten-
tielle et cinétique au moyen de coefficients faisant intervenir les raideurs, les masses
volumiques, ainsi que les hauteurs des couches. Le modèle écrit par Woodcock est géné-
ralisé au cas des plis hors axes [woodcock_free_2008 ], mais ne décrit pas explicitement
le champ de déplacements. Il a été reformulé par Loredo [Loredo2011 ] en explicitant le
champ de déplacement avec des warping functions. Le lien entre la présente formulation
et la formulation originale de Woodcock est décrit dans l’annexe A.

Ce modèle est basé sur des hypothèses de continuité de déplacements et de contraintes
à chaque interface (équations (2.37) et (2.36)). Le résultat de l’application de ces conditions
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FIGURE 2.3 – Warping functions ϕ11 et ϕ12 pour le modèle de Reddy pour un stratifié
compris entre −h/2 et h/2 avec z0 = 0.

implique que le champ de déplacement de chaque couche ` ∈ [2..n] est lié à celui de
la couche de référence. Le modèle décrit le cisaillement transverse avec une variation
linéaire par morceaux suivant z, les déformations de cisaillement transverse à l’intérieur
d’une couche sont constantes. Les ϕαβ(z) sont alors des fonctions linéaires à l’intérieur
de chaque couche dont la continuité est assurée aux interfaces entre les couches.

Avec ces hypothèses, le déplacement transverse w et les déformations de cisaillement
transverse γ`

α3 sont constants suivant z à l’intérieur de chaque couche. Ces conditions se
traduisent donc par :
– la continuité des déplacements

u`α(x, y, z` + h`/2) = u`+1
α (x, y, z`+1 − h`+1/2) (2.36)

– la continuité des contraintes de cisaillement transverse

σ`α3 = σ`+1
α3 (2.37)

Les équations (2.36) et (2.37) permettent donc de lier le champ de déplacements de la
couche (` + 1) avec celui de la couche `, et, récursivement, au champ de déplacements
de la première couche, en suivant le procédé détaillé dans la référence [Guyader1978 ].

La seule condition de continuité des contraintes de cisaillement transverse permet de
formuler les ϕ

′

αβ comme un rapport des rigidités de cisaillement transverse entre le plan
de référence et les autres couches :

ϕ
′

αβ(z) = 4S α3γ3(z)Cγ3δ3(0)δδβ = 4S α3γ3(z)Cγ3β3(0) (2.38)
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FIGURE 2.4 – Warping functions ϕ11 et ϕ12 pour le modèle de Sun et Whitney pour un
stratifié compris entre −h/2 et h/2 avec z0 = 0.

Les warping functions peuvent donc s’écrire :

ϕαβ(z) = 4Cγ3β3(0)
∫ z

0
S α3γ3(ζ)dζ (2.39)

2.7.4/ Warping functions CONSTITUÉES DE POLYÔMES CUBIQUES PAR COUCHE

Les ϕ
′

αβ peuvent être composés d’une série de polynômes du second ordre pour chaque
couche respectant des conditions des équations (2.30), (2.33) et (2.3).

Les conditions à respecter sont au nombre de 4n + 8 où n est le nombre de couches. Il
est nécessaire d’avoir pour chaque ϕ

′

αβ, n polynômes d’ordre 2 soit 4 × n × 3 coefficients
de la forme

ϕ
′

αβ

i
= ai

αβ + bi
αβz + ci

αβz
2 (2.40)

avec avec i ∈ [1, n]. Afin d’équilibrer le nombre de conditions et d’inconnues, on choisit
de mettre en commun pour toutes les couches deux des trois coefficients ce qui réduit
le nombre de coefficients à 4n + 8. Plusieurs auteurs ont proposé ce type de formula-
tion parmi lesquels on peut citer Kim [kim_enhanced_2006 ], qui présente des warping
functions comme un modèle zig-zag auquel on vient superposer une variation cubique
globale afin de respecter les conditions de continuité statiques et géométriques. Les po-
lynômes sont alors de la forme :

ϕ
′

αβ

i
= ai

αβ + bαβz + cαβz2 (2.41)

On peut également citer l’article de Pai [Pai1995 ], qui lui propose une méthode relative-
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FIGURE 2.5 – Warping functions ϕ11 et ϕ12 pour le modèle de Kim pour un stratifié compris
entre −h/2 et h/2 avec z0 = 0.

ment proche, les ϕαβ sont de la forme

ϕαβ
i = ci

αβ + di
αβz + ai

αβz
2 + bi

αβz
3 (2.42)

et il pose les conditions suivantes :



ε0
13(x, y, 0) = 0

ε0
23(x, y, 0) = 0

ui
1(x, y, zi+1) − ui+1

1 (x, y, zi+1) = 0

ui
2(x, y, zi+1) − ui+1

2 (x, y, zi+1) = 0

σi
1(x, y, zi+1) − σi+1

1 (x, y, zi+1) = 0

σi
2(x, y, zi+1) − σi+1

2 (x, y, zi+1) = 0

εn
13(x, y, zn+1) = 0

εn
23(x, y, zn+1) = 0

(2.43a)

(2.43b)

(2.43c)

(2.43d)

(2.43e)

(2.43f)

(2.43g)

(2.43h)

(2.43i)

avec pour la couche de référence, notée J,

cJ
αβ = dJ

12 = dJ
21 = 0, dJ

11 = dJ
22 = 1 (2.44)

et pour i = 1 . . . J − 1, J + 1 . . . n

ci
12 = ci

21 = di
12 = di

21 = ai
11 = di

22 = 0, dJ
11 = di

22 = 1 (2.45)

Cette méthode diffère de celle de Kim par le choix arbitraire de certains coefficients
(équations (2.44) et (2.45))
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FIGURE 2.6 – Warping functions ϕ11 et ϕ12 pour le modèle de Pai pour un stratifié compris
entre −h/2 et h/2 avec z0 = 0.

2.7.5/ Warping functions ISSUES DES CONTRAINTES DE CISAILLEMENT

On peut construire des warping functions à partir des contraintes de cisaillement issues
d’une solution analytique. Nous nous intéresserons à une solution analytique pour une
plaque rectangulaire simplement appuyée sous un chargement bisinusoïdal. La méthode
de discrétisation employée est celle de Navier, présentée en détails dans la section 3.2.
Pour ce cas, les déplacements sont de la forme :

u1

u2

w
γ13

γ23


=



umn
1 cos(ξx) sin(ηy) +umn

1 sin(ξx) cos(ηy)
umn

2 sin(ξx) cos(ηy) +umn
2 cos(ξx) sin(ηy)

wmn sin(ξx) sin(ηy) +wmn cos(ξx) cos(ηy)
γmn

13 cos(ξx) sin(ηy) +γmn
13 sin(ξx) cos(ηy)

γmn
23 sin(ξx) cos(ηy) +γmn

23 cos(ξx) sin(ηy)


(2.46)

avec
ξ =

mπ
a

and η =
nπ
b

Chaque déplacement est exprimé comme la somme de deux fonctions trigonométriques
complémentaires dont les amplitudes sont notées (.)mn et (.)mn pour la déformée du mode
(m, n). Pour le cas statique, on choisira m = n = 1.

D’après l’équation (2.9b), on voit que les ϕ
′

αβ sont directement liés aux σα3 ; il est donc
possible de proposer des ϕ

′

αβ à partir des résultats de l’élasticité tridimensionnelle. Pour
cela il est nécessaire définir les Ψ

′

αβ de façon à ce que,

σα3(z) = Ψ
′

αβ(z)σ0
α3 (2.47)
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Il est, par ailleurs, possible d’écrire la relation suivante,

σα3(z) = Cα3β3εβ3(z) = Cα3β3(z)ϕ
′

βγ(z)γ0
γ3 = 4Cα3β3(z)ϕ

′

βγ(z)S γ3δ3(0)σ0
δ3 (2.48)

d’où, en identifiant les deux équations précédentes,

Ψ
′

αβ(z) = 4Cα3δ3(z)ϕ
′

δγ(z)S γ3β3(0) (2.49)

puis,
ϕ
′

αβ(z) = 4S α3δ3(z)Ψ
′

δγ(z)Cγ3β3(0) (2.50)

Les quatre fonctions Ψ
′

αβ sont obtenues à partir des contraintes de cisaillement trans-
verse calculées en deux points A et B distincts de la plaque (voir figure 2.7). Puisque les
déplacements de la plaque sont de la forme (2.46), les σα3 s’écrivent :

σ0
13 = s13 cos(ξx) sin(ηy) + s13 sin(ξx) cos(ηy)

σ0
23 = s23 sin(ξx) cos(ηy) + s23 cos(ξx) sin(ηy)

(2.51a)

(2.51b)

L’évaluation des s13, s13, s23 et s23 est donc faite aux points A et B, illustrés sur la figure 2.7.
On a :
– au point A, x = a/2 et y = 0, σ0

13 = s13 et σ0
23 = s23

– au point B, x = 0 et y = b/2, σ0
13 = s13 et σ0

23 = s23

Remplacer ces valeurs locales dans la formule (2.47) permet d’obtenir le système suivant :
s13 0 s23 0
0 s23 0 s13

s13 0 s23 0
0 s23 0 s13




Ψ
′

11

Ψ
′

22

Ψ
′

12

Ψ
′

21


=


σ13(B)
σ23(A)
σ13(A)
σ23(B)


(2.52)

Les Ψ
′

αβ(z) sont alors obtenus à partir de la résolution de ce système ; les ϕ
′

αβ(z) sont
ensuite obtenus en utilisant l’équation (2.50) et en intégrant les ϕ

′

αβ(z), avec une constante
d’intégration choisie de façon à ce que ϕαβ(0) = 0, ce qui permet d’obtenir les warping
functions ϕαβ(z). Cette méthode permet donc d’établir les warping functions à partir des
contraintes de cisaillement d’une plaque soumise à un état de déformation particulier.

Les σα3(z) peuvent être obtenues de manière exacte à partir de solutions analytiques tri-
dimensionnelles (ce qui correspond au cas décrit ci-dessus). D’autre part, il est possible
d’obtenir les contraintes de cisaillement transverse au travers de l’intégration des équa-
tions d’équilibre de la mécanique dans un solide et d’obtenir un jeu de warping functions
à partir de ces équations.

En négligeant les forces volumiques, Les équations d’équilibre de la mécanique dans un
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A

B

0

x = a

y = b

z

FIGURE 2.7 – Etat déformé de la plaque représentant les points d’évaluation de
contraintes de cisaillement transverse.

solide, s’écrivent : σαβ,β + σα3,3 = ρüα

σα3,α + σ33,3 = ρü3

(2.53a)

(2.53b)

Les contraintes de cisaillement transverse, pour le cas statique, s’écrivent donc :

σα3(z) =

∫ z

−h/2
σαβ,β(z)dz

=

∫ z

−h/2
Qαβγδ(z)

(
ε0
γδ,β(x, y) − zw0

,γδβ(x, y) + ϕγµ(z)γ0
µ3,δβ(x, y)

)
dz

(2.54a)

(2.54b)

En réutilisant les warping functions ainsi obtenues et en répétant ce principe, il est alors
possible d’implémenter un algorithme itératif convergeant vers un nouveau jeu de warping
functions. L’algorithme 1 peut donc être implémenté, sans garantie de convergence, dans
le but d’obtenir le résultat pour un cas de chargement statique ou dynamique d’un stratifié
quelconque.

Ces deux dernières méthodes d’obtention des jeux de warping functions sont liées aux
lois de l’élasticité tridimensionnelle. Bien que les résultats des calculs obtenus avec ces
jeux de warping functions se basent sur les hypothèses posées par le champ de dépla-
cements de l’équation (2.1), on peut supposer que les résultats obtenus avec ce dernier
type de warping functions seront de meilleure qualité.

Les résultats numériques associés aux différents jeux de warping functions présentés
dans ce chapitre sont donnés dans la section 4.1 où la méthode de Navier est utilisée
pour comparer les différents modèles et valider le modèle générique.
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Algorithme 1 : Algorithme itératif d’obtention des warping functions.

Étape 1 : initialisation;
Générer les warping functions du modèle HSDT;
Calculer la matrice de rigidité correspondante;
Résoudre le problème statique pour le modèle HSDT;
Assigner la flèche obtenue à la variable w1;
Obtenir erreur1 = tolerance et i = 1;
Étape 2 : itérations;
tant que

∣∣∣erreurri
∣∣∣ >= tolerance faire

Calculer les contraintes de cisaillement transverse en utilisant les équations
d’équilibre;
Calculer les nouvelles warping functions;
Calculer la matrice de rigidité correspondante;
Résoudre le problème statique;
Assigner la flèche à la variable wi+1;
erreuri+1 = wi+1−wi

wi+1 ;
i = i + 1;



3
MÉTHODES DE DISCRÉTISATION

De manière générale, un couple modèle-méthode de discrétisation est adapté à la ré-
solution d’un problème donné et produit une solution unique. Par problème, on entend
l’ensemble des paramètres caractéristiques d’une simulation (type de plaque, conditions
aux limites choisies, excitation) que l’on souhaite réaliser. Un modèle de plaque, est gé-
néralement caractérisé par une matrice de comportement, des équations d’équilibre ou
encore l’expression de l’énergie potentielle de déformation ou cinétique. Pour un pro-
blème donné, le choix d’une méthode de discrétisation est donc souvent rattaché au
modèle mécanique, et est aussi établi en fonction de la structure à modéliser, du cas
de chargement et des conditions aux limites. Par ailleurs, la plupart des modèles mé-
caniques peuvent être implémentés avec plusieurs méthodes de discrétisation. En effet,
les modèles classiques de la mécanique ainsi que le modèle générique présenté dans
le chapitre 2, et de manière plus générale les formulations variationnelles sont pour la
plupart résolvables avec la méthode de Rayleigh-Ritz et la méthode des éléments finis.
Il conviendra cependant de choisir une méthode de discrétisation adaptée au modèle. Il
est par exemple nécessaire de s’assurer que le degré de continuité des fonctions d’inter-
polation est adapté dans le cas de la méthode des éléments finis. Il en va de même pour
le choix de la base de projection dans le cas de la méthode de Rayleigh-Ritz.

Nous décrivons dans ce chapitre trois méthodes de discrétisation différentes adaptées
au modèle de plaque présenté dans la chapitre 2, chacune étant associée à un cas test
donné. Nous présentons tout d’abord la méthode de Rayleigh-Ritz, puis, la méthode de
Navier qui est une adaptation de la méthode de Rayleigh-Ritz pour l’étude d’une plaque
simplement appuyée et enfin deux types d’éléments finis adaptés à notre modèle.

3.1/ MÉTHODE DE RAYLEIGH-RITZ

La méthode de Rayleigh-Ritz pour l’étude de plaques en vibration, telle que présentée
dans la thèse de Plessy [plessy_comportement_2009 ], est pour l’occasion adaptée à
la simulation de plaques munies de dispositifs amortissants passifs. En effet, les défor-
mées modales d’une plaque sont souvent relativement faciles à exprimer sur une base de
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projection bidimensionnelle lorsque celle-ci est correctement choisie. Un autre avantage
de la méthode est la facilité d’implémenter des modèles faisant intervenir des dérivées
d’ordres supérieurs lorsque la base de projection choisie est de forme trigonométrique.
La méthode est donc communément utilisée pour l’analyse des modes et fréquences
propres de structures, mais aussi pour étudier la réponse dynamique d’une plaque (ou
d’une poutre) soumise à un chargement donné.

3.1.1/ PROBLÈME ASSOCIÉ

Du fait de la projection de tous les degrés de liberté sur une base, cette méthode de
discrétisation est adaptée à la simulation de la vibration de plaques rectangulaires sou-
mises à une excitation quelconque. Nous présentons la méthode au travers de l’étude
d’une plaque rectangulaire, bafflée, munie d’un ou plusieurs patchs viscocontraints sou-
mise à une excitation ponctuelle, à une onde plane incidente ou encore à un champ diffus.
La figure 3.1 illustre le cas étudié.

x

y

z

θ

ϕ

FIGURE 3.1 – Représentation d’une plaque rectangulaire bafflée soumise à une onde
plane incidente d’angles θ et ϕ.

3.1.2/ STRUCTURE MODÉLISÉE

Le système est constitué d’une plaque support et de un ou plusieurs patchs viscocon-
traints. La plaque support peut être constituée d’une ou plusieurs couches, et chaque
patch peut lui aussi être constitué d’une ou plusieurs couches de matériaux orthotro-
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piques dont les propriétés peuvent varier avec la fréquence. Le principe de superposi-
tion est utilisé pour obtenir les matrices de masse et de rigidité de la plaque patchée
comme illustré dans la figure 3.2. L’énergie cinétique totale Etot

k est composée de l’éner-
gie cinétiqueES

k de la plaque de base sur la surface totale de la plaque S à laquelle on
soustrait l’énergie cinétique de la plaque de base sur la surface du patch S c ajoutée de
l’énergie cinétique de l’empilement composé de la plaque de base et du patch Ed

k sur la
surface du patch S c. Le même principe est utilisé pour l’énergie de déformation Es. On re-
marque par ailleurs qu’il est possible d’apposer des patchs de chaque côté de la plaque.
La figure 3.3 illustre les différentes variables mises en jeu pour décrire la géométrie de

= − +

Etot
k , Etot

s = Es
k, E

s
s sur S − Es

k, E
s
s sur Sc + Ed

k , E
d
s sur Sc

FIGURE 3.2 – Principe de superposition pour la plaque support et un patch viscocontraint.

as

bs

0

Y

X

ap

bp

yp

Γ1

xp

Γ3

Γ4 Γ2

FIGURE 3.3 – Paramètre géométriques de la plaque support et des patchs viscocon-
traints.

la structure avec pour la plaque support :
– as la longueur de la plaque
– bs la largeur de la plaque
– les Γi représentent les bords de la plaque sur lesquels on applique les conditions aux

limites.

Et pour le patch :
– ap la longueur du patch
– bp la largeur du patch
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– les Γi sont les bords de la plaque devant recevoir les conditions aux limites

Chaque couche peut être constituée d’un matériau orthotrope orienté dans lo plan
(O, X,Y) avec un angle quelconque.

3.1.3/ BASE IMPLÉMENTÉE

Dans ce type de problème, les bases utilisées sont la plupart du temps de type polyno-
mial, trigonométrique ou exponentiel. Le choix de la base est généralement conditionné
par les conditions aux limites imposées à la plaque, afin que le champ de déplacement
associé soit cinématiquement admissible. Ce choix a aussi son importance pour le com-
portement dynamique de la plaque. Lorsque les formes des fonctions de la base se rap-
prochent des déformées modales de la plaque, l’ordre nécessaire pour décrire la réponse
de la plaque est alors moins élevé. Un choix judicieux de la base est donc essentiel et
permet de réaliser des calculs dont la taille du système à résoudre est alors réduite.

Le modèle de plaque présenté dans le chapitre 2 nécessite la manipulation de dérivées
secondes de la flèche w (présentes dans l’équation d’équilibre (2.28)). L’emploi d’une base
trigonométrique, permettant de dériver chaque fonction plusieurs fois sans difficulté, est
donc particulièrement adapté à la résolution de ce problème. Dans certains cas, les bases
trigonométriques peuvent présenter l’avantage d’être orthogonales, c’est à dire que leurs
éléments sont orthogonaux deux à deux. Lorsque l’on souhaite avoir de la souplesse
pour imposer des conditions aux limites variées, il est intéressant de pouvoir disposer
d’une unique base qui permette de traiter tous les cas. Le choix de la base de projec-
tion

{
φr

mn(x, y)
}

est donc un élément essentiel de la méthode de Rayleigh-Ritz. La base
présentée par Plessy [plessy_comportement_2009 ] est la suivante :

{
φr(x, y)

}
=


sin

(
mπx
as

)
sin

(
nπy
bs

)
sin

(
mπx
as

)
cos

(
nπy
bs

)
cos

(
mπx
as

)
sin

(
nπy
bs

)
cos

(
mπx
as

)
cos

(
nπy
bs

)


(3.1)
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avec

pour r = 1, m = 1 et n = 1

pour r = 2, m = 1 et n = 2

pour r = 3, m = 1 et n = 3
...

pour r = N, m = 1 et n = N

pour r = N + 1, m = 2 et n = 1
...

pour r = M × N, m = M et n = N

Bien qu’ayant pour avantage de permettre d’imposer une grande variété de conditions
aux limites, cette base est non orthogonale et impose donc l’utilisation de la matrice du
tenseur métrique pour certaines opérations. De plus, il s’est avéré qu’elle induisait des
problèmes de conditionnement des matrices de rigidité et de masse. Enfin, elle néces-
site l’ajout de raideurs artificielles afin de simuler les conditions aux limites souhaitées,
raideurs en l’absence desquelles on a une condition libre.

Afin de parer à ces inconvénients, une base présentée par Bes-
lin [beslin_hierarchical_1997 ] a été choisie puis implémentée. Celle ci est définie
comme suit :

{φm(x)} =
{
sin

(
αm2x+βm

Lx

)
sin

(
γm2x+δm

Lx

)}
(3.2)

et
{φr(x, y)} = {φm(x)φn(y)} (3.3)

où les coefficients αm, βm, γm et δm sont donnés dans le tableau 3.1, La base étant bi-
dimensionnelle, la correspondance entre l’indice r et les indices m et n est identique à
celle de Plessy. Les coefficients αn, βn, γn et δn sont identiques aux αm, βm, γm et δm. En
observant les fonctions 1 à 4 de la base de projection présentées dans la figure 3.4, il est
possible d’en déduire les combinaisons de fonctions permettant d’imposer les conditions
aux limites les plus classiques. Ainsi le tableau 3.2 présente le jeu de fonctions de la base
à associer à chaque degré de liberté pour respecter diverses conditions aux limites. Ce
tableau permet de faire un choix de fonctions de la base pour une direction de l’espace.
Pour le cas bidimensionnel, le même tableau est utilisé et la base est composée à l’aide
de l’équation (3.3). Cette base s’est avérée ne pas présenter de problème de condition-
nement lorsque l’ordre augmente, et permet d’éviter l’implémentation de rigidité fictives
ayant pour but de simuler les conditions aux limites. Toutefois, elle n’est pas orthogonale,
l’utilisation de la matrice du tenseur métrique est donc nécessaire pour certaines opéra-
tions. Par ailleurs, l’étude de Beslin [beslin_hierarchical_1997 ] montre que cette base
est particulièrement adaptée aux plaques en vibration pour les déformées des modes
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m αm βm γm δm

1
π

4
3π
4

π

4
3π
4

2
π

4
3π
4

−
π

2
−

3π
2

3
π

4
−

3π
4

π

4
−

3π
4

4
π

4
−

3π
4

π

2
−

3π
2

m > 4
π

2
(m − 4)

π

2
(m − 4)

π

2
π

2

TABLE 3.1 – Coefficients intervenant dans les termes de la base présentée par Beslin.

u1 u2 w γ13 γ23

Encastré-Encastré
Encastré-Libre φ3, φ4 φ3, φ4 φ3, φ4 φ3, φ4 φ3, φ4

Encastré-Appuyé φ3, φ4 φ3, φ4 φ4 φ3, φ4 φ3, φ4

Encastré-Guidé φ3, φ4 φ3, φ4 φ3 φ3, φ4 φ3, φ4

Libre-Encastré φ1, φ2 φ1, φ2 φ1, φ2 φ1, φ2 φ1, φ2

Libre-Libre φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Libre-Appuyé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Libre-Guidé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Appuyé-Encastré φ1, φ2 φ1, φ2 φ2 φ1, φ2 φ1, φ2

Appuyé-Libre φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Appuyé-Appuyé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ2, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Appuyé-Guidé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ2, φ3 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Guidé-Encastré φ1, φ2 φ1, φ2 φ1 φ1, φ2 φ1, φ2

Guidé-Libre φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Guidé-Appuyé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ4 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

Guidé-Guidé φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4 φ1, φ3 φ1, φ2, φ3, φ4 φ1, φ2, φ3, φ4

TABLE 3.2 – Jeu de fonctions de la base associé pour chaque degré de liberté nécessaire
au respect de la condition aux limites.
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FIGURE 3.4 – Quatre premières fonctions de la base de Beslin permettant de s’adapter
aux conditions aux limites.
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FIGURE 3.5 – Fonctions 5 à 8 de la base de Beslin.

d’ordre supérieur.

3.1.4/ FORMULATION ÉNERGÉTIQUE

La méthode de Rayleigh-Ritz est une méthode variationnelle directe dans laquelle on
recherche le minimum d’une fonctionnelle d’énergie F définie dans un sous-espace. On
considère l’expression

I ({Φ}) =

"
S

F ({Φ (x, y)}) dS (3.4)
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L’objectif est donc de minimiser cette intégrale. Les variable étant projetées sur une base
finie de fonctions, la solution est de la forme

Φ∗(x, y) '
N∑

n=1

anφn(x, y) (3.5)

où les φn respectent des conditions aux limites homogènes. Les an sont les coefficients
de la base et {Φ∗} est une solution approchée de la solution exacte {Φ}. En remplaçant
l’équation (3.5) dans l’équation (3.4) et en exprimant l’intégrale I({Φ}) comme une fonction
de N coefficients a1, a2, ..., aN , on peut écrire :

I
(
Φ∗

)
= I (a1, a2, ..., aN) (3.6)

Le minimum de la fonction I est obtenu lorsque toutes ses dérivées partielles par rapport
à chaque coefficient sont nulles :

∂I
∂an

= 0 pour n = 1, 2, ...,N (3.7)

Dans notre cas, nous appellerons {X} le vecteur de la solution approchée {Φ∗}.

Nous obtenons donc un jeu de N équations permettant d’obtenir la solution du système.
Pour notre système mécanique, la fonctionnelle est composée de la façon suivante

I ({X}) =

"
S

(L + Wt) dS (3.8)

=

"
S

(T − V + Wt) dS (3.9)

(3.10)

avec le lagrangien L = T − V et où T et V sont respectivement l’énergie cinétique et
l’énergie potentielle totale. Wt représente le travail total des forces extérieures. L’énergie
potentielle totale, composée de la somme de l’énergie potentielle interne de déformation
et de l’énergie potentielle des forces de liaison, s’écrit"

S
VdS =

1
2

"
S

∫ h
2

− h
2

σi j (x, y, z) εi j (x, y, z) dzdS +

∫
Γ

eΓdΓ (3.11)

avec σ le tenseur des contraintes, ε le tenseur des déformations et
∫
Γ

eΓdΓ l’énergie em-
maganisées au travers des conditions aux limites.

De même, T l’énergie cinétique s’écrit :"
S

TdS =
1
2

"
S

∫ h
2

− h
2

ρ (x, y, z) (u̇1 (x, y, z)2 + u̇2 (x, y, z)2 + ẇ (x, y, z)2)dzdS (3.12)

avec ρ la masse volumique, u1, u2, w les déplacement des points de la plaque. Puis, dans
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le but d’obtenir l’extremum de la fonctionnelle d’énergie, solution de l’équation 3.7, nous
utilisons les équations de Lagrange :

d
dt

(
∂L
∂Ẋ j

)
−
∂L
∂X j

= 0 (3.13)

avec L le Lagrangien défini par : L = T − V et les X j les composantes du vecteur des
coefficients d’approximation de Ritz d’ordre j en sachant que

{
X j

}
=



u1(t)
u2(t)
w(t)
γx(t)
γy(t)


=



u11
1 (t)

u11
2 (t)

W11(t)
γ11

x (t)
γ11

y (t)
u12

1 (t)
...
...

γmn
y (t)



(3.14)

et que puisque nous sommes en régime harmonique les déplacement sont de la forme
u1(t) = u1e jωt, ..., γmn

y (t) = γmn
y e jωt. Puisque l’énergie cinétique ne dépend pas des coef-

ficients {Xmn(t)} et puisque l’énergie potentielle ne dépend pas des coefficients
{
Ẋ j

}
, les

équations de Lagrange peuvent s’écrire :

d
dt

 ∂T

∂
{
Ẋ j(t)

} +
∂V

∂
{
X j(t)

} = 0 (3.15)

Il est alors possible de réécrire l’expression de l’énergie cinétique T sous forme matricielle
en fonction d’une matrice de masse [M],

T (t) =
1
2

{
Ẋ
}T

[M]
{
Ẋ
}

(3.16)

et de même pour l’énergie potentielle V en fonction de la matrice de rigidité [K] :

V(t) =
1
2
{X}T [K] {X} (3.17)

En introduisant les équations (3.16) et (3.17) dans l’équation (3.15), celle-ci devient :

(−ω2 [M] + [K])
{
X̃
}

= 0 (3.18)

Il est par ailleurs possible de réécrire le système sous sa forme complexe à l’aide de
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matrices d’impédance associées aux matrices
[
K̃

]
et

[
M̃

]
:

(−ω2
[
M̃

]
+

[
K̃

]
)
{
X̃
}

= 0 (3.19)(
−ω2 ([M] + jω [CM]) + ([K] + jω [CK])

) {
X̃
}

= 0 (3.20)(
−ω2 [M] + jω

(
[CK] − ω2 [CM]

)
+ [K]

) {
X̃
}

= 0 (3.21)

3.1.5/ RECHERCHE DES VALEURS ET VECTEURS PROPRES

La recherche des valeurs propres du système conservatif associé se fait en cherchant
les valeurs de ω pour lesquelles le déterminant de la matrice du système (−ω2

[
M̃

]
+[

K̃
]
) est nul. Dans le cas des matrices d’impédance complexes, il convient de réécrire

le système avec une matrice d’amortissement [C]. L’équation du système libre (3.21) peut
alors s’écrire :

[M]
{
Ẍ
}

+ [C]
{
Ẋ
}

+ [K] {X} = {0} (3.22)

Le système peut alors être augmenté à l’aide de l’identité suivante :

[M]
{
Ẋ
}
− [M]

{
Ẋ
}

= {0} (3.23)

À l’aide des équations (3.22) et (3.23), nous pouvons réécrire un système de taille 2N

[A] {ẏ} + [B] {y} = {0} (3.24)

avec

[A] =

 [0] [M]
[M] [C]

 [B] =

 − [M] [0]
[0] [K]


{ẏ} =

 {ẍ}{ẋ}
 {y} =

 {ẋ}{x}


La solution de l’équation (3.24) permet d’obtenir les valeurs des fréquences propres (com-
plexes) ainsi que les vecteurs des modes propres (complexes).

3.1.6/ ÉQUATIONS DU MOUVEMENT FORCÉ DU SYSTÈME

Compte tenu de l’approche bidimensionnelle utilisée, les sollicitations extérieures sont
toujours considérées normales au plan de référence choisi et sont ramenées à celui ci.
Le travail dû aux forces extérieures inclut à la fois les forces d’excitation et la pression
exercée par la charge du fluide sur la plaque. Le travail des forces extérieures F(x, y, t)
sur un cycle de chargement s’exprime alors :

WF =

"
S

F(x, y, t)W(x, y, t)dS (3.25)
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avec W(x, y, t) la flèche au plan moyen intégrée sur une période t et la surface de plaque
S . L’équation du mouvement de la structure est ensuite obtenue à l’aide de l’équation de
Lagrange.

d
dt

(
∂T
∂Ẋ j

)
+
∂V
∂X j

=
∂WF

∂X j
(3.26)

On remarque que les effets du fluide du milieu environnant sont négligés dans cette for-
mulation, ceci revient à poser comme hypothèse que les fluides environnant sont consi-
dérés comme des fluides légers (comme par exemple l’air), et que ceux-ci n’interagissent
pas avec la plaque.

Sollicitation par une force ponctuelle

Pour une sollicitation mécanique par une force ponctuelle F(t) appliquée au point (xp, yp)
perpendiculairement à la plaque, l’expression du travail Wp de cette force s’exprime par :

Wp =

"
S

F(t)δ(x − xp)δ(y − yp)W(x, y, t)dS (3.27)

Wp = F(t)W(x, y, t) (3.28)

A l’aide de l’équation (3.26), pour un régime harmonique, nous obtenons donc le système
suivant : (

−ω2
[
M̃

]
+

[
K̃

]) {
X̃
}

=
{
F̃
}

(3.29)

avec {
F̃
}

=

∫ as

0

∫ bs

0
Fδ(x − xp)δ(y − yp) {φ(x, y)}dydx (3.30)

Sollicitation à l’aide d’une onde plane progressive

La plaque étudiée séparant deux milieux fluides semi-infinis, les forces dues à une onde
plane progressive sont dues à une différence de pression entre les deux milieux avec
p1(x, y, z = 0, t) la pression dans le milieu 1 et p2(x, y, z = 0, t) la pression dans le milieu 2.
La différence de pression s’exprime alors comme la différence des pression rayonnées
par la plaque entre les deux milieux pray

1 − pray
2 augmentée de la pression incidente et de

la pression réfléchie (égale à la pression incidente) :

p1(x, y, z = 0, t) − p2(x, y, z = 0, t) = (3.31)

pray
1 − pray

2 + 2PI exp
(
− jk1

((
x −

as

2

)
sin(θ) cos(ϕ) +

(
y −

bs

2

)
sin(θ) cos(ϕ)

))
Or, en gardant l’hypothèse des fluides légers, p1(x, y, z = 0, t) et p2(x, y, z = 0, t) sont

bien inférieurs à la pression incidente, on peut alors choisir de négliger ces deux termes.
k1 = ω/c1 est le nombre d’onde du milieu excitateur et c1 est la célérité du son dans ce
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même milieu. L’expression du travail de la force incidente résultante Wop s’écrit alors :

Wop =

"
S

2PI exp
(
− jk1

((
x −

as

2

)
sin(θ) cos(ϕ) +

(
y −

bs

2

)
sin(θ) cos(ϕ)

))
dS (3.32)

Le vecteur force correspondant s’écrit alors :

{
F̃
}

= 2PI

∫ as

0
e− jk1((x− as

2 ) sin(θ) cos(ϕ)) {φm(x)}dx
∫ bs

0
e− jk1

((
y− bs

2

)
sin(θ) cos(ϕ)

)
{φn(y)}dy (3.33)

avec φ(x, y) = φx(x)φy(y).

3.1.7/ POST-TRAITEMENT

Il est essentiel d’avoir plusieurs indicateurs globaux du comportement vibratoire de la
plaque. Nous proposons ici plusieurs indicateurs couramment utilisés pour évaluer le
comportement vibroacoustique d’une structure.

3.1.7.1/ VITESSE QUADRATIQUE MOYENNE

La vitesse quadratique moyenne est un bon indicateur du niveau d’excitation mécanique
global de la plaque. Celle-ci permet de visualiser au travers d’un seul indicateur le com-
portement global de la structure. Elle est définie comme la vitesse moyenne sur une
période et sur la surface de la plaque.

〈V2〉 =
1

asbs

1
T

∫ T

0

∫ as

0

∫ bs

0

1
2

∣∣∣∣∣dW (x, y, t)
dt

∣∣∣∣∣2 dydxdt (3.34)

En régime harmonique, l’équation (3.34) devient :

〈V2〉 =
ω2

2asbs

∫ as

0

∫ bs

0
W̃ (x, y, ω) W̃ (x, y, ω)? dydx (3.35)

Le symbole ? indique la valeur complexe conjuguée. La vitesse quadratique peut être
réécrite en fonction du vecteur

{
X̃
}

issu de la résolution de l’équation (3.29) :

〈V2〉 =
ω2

2asbs

{
X̃
}T

[∫ as

0

∫ bs

0

{
φr

mn(x, y)
} {
φr

mn(x, y)
}T? dydx

] {
X̃
}?

(3.36)

On remarque au passage qu’il est possible d’identifier la matrice du tenseur métrique [T]
à partir de l’équation (3.36) :

[T] =

∫ as

0

∫ bs

0

{
φr

mn(x, y)
} {
φr

mn(x, y)
}T? dydx (3.37)
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3.1.7.2/ INDICATEURS ACOUSTIQUES

Il est possible d’utiliser plusieurs indicateurs acoustiques afin d’étudier les effets
des patchs viscocontraints. Les deux principaux indicateurs utilisés sont la puis-
sance acoustique rayonnée et la transparence acoustique. Les formules de ces
deux indicateurs sont données pour la méthode de Rayleigh-Ritz dans la thèse de
Plessy [plessy_comportement_2009 ]. Celles -ci peuvent être directement utilisées
avec notre base de projection.

3.2/ PROCÉDURE DE NAVIER ADAPTÉE À UN STRATIFIÉ QUEL-
CONQUE

La méthode de Navier permet de réaliser des calculs sur un stratifié pour une plaque rec-
tangulaire simplement appuyée dans un cas de chargement particulier. Dans sa version
classique, telle que présentée dans la section 1.5, la méthode est limitée aux stratifiés
dont les axes d’orthotropie sont confondus avec le repère de la plaque. Nous proposons
ici une variation de la méthode permettant le calcul d’un stratifié quelconque. Cette mé-
thode de discrétisation a pour avantage de ne pas avoir une précision relative à une
densité de maillage ou un ordre maximal de la base. On peut donc considérer cette mé-
thode comme exacte, la qualité des résultats est alors uniquement dépendante du mo-
dèle. Cette méthode, proche de celles utilisées pour les solutions exactes décrites dans
la section 1.4.1, est couramment utilisée dans la littérature afin de comparer différents
modèles.

3.2.1/ PROBLÈME ASSOCIÉ

La méthode de Navier telle que classiquement utilisée dans la littéra-
ture [kant_analytical_2001, carrera_unified_2005, jam_new_2010 ], est réservée
aux stratifiés orthotropes dont les axes d’orthotropie sont confondus avec le repère de la
plaque, ou pour des stratifiés avec une séquence d’empilement antisymmétrique, pour
une plaque simplement appuyée. Dans ce cas, on suppose que lorsque le chargement
appliqué est de la forme sin

(
πx
as

)
sin

(
πy
bs

)
, la déformée de la plaque est de la même forme.

Nous proposons ici une généralisation de cette méthode permettant l’étude de stratifiés
orthotropes quelconques simplement appuyés.
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3.2.2/ CHAMP DE DÉPLACEMENT

Le champ de déplacement associé est :

u1

u2

w
γ13

γ23


=



umn
1 cos(ξx) sin(ηy) +umn

1 sin(ξx) cos(ηy)
umn

2 sin(ξx) cos(ηy) +umn
2 cos(ξx) sin(ηy)

wmn sin(ξx) sin(ηy) +wmn cos(ξx) cos(ηy)
γmn

13 cos(ξx) sin(ηy) +γmn
13 sin(ξx) cos(ηy)

γmn
23 sin(ξx) cos(ηy) +γmn

23 cos(ξx) sin(ηy)


(3.38)

avec
ξ =

mπ
a

and η =
nπ
b

où m = 1 et n = 1 pour une analyse statique, ou arbitrairement choisis pour l’étude
dynamique du mode (m, n).

Le chargement est de la forme :

q(x, y) = q0 sin(ξx) sin(ηy) + q0 cos(ξx) cos(ηy) (3.39)

Pour un m et un n donné, les équations d’équilibre du modèle (2.28) donnent une ma-
trice de rigidité et une matrice de masse, respectivement [K] et [M], liées au vecteur
{U} = {u1, u2 . . . γ13, γ23}. Le cas statique est traité en résolvant le système [K] {U} = {F},
où {F} est un vecteur force unitaire contenant qmn

0 sur sa troisième composante. On choi-
sira qmn

0 = 1. Résoudre le problème dynamique consiste à faire une recherche de valeurs
propres généralisées sur les matrices [K] et [M]. Dans le cas où les axes d’orthotro-
pie du stratifié sont confondus avec le repère de la plaque ou si le stratifié possède une
séquence d’empilement de ses plis antisymétrique, alors w respecte les conditions sim-
plement appuyée, i. e. wmn = 0. Pour le cas le plus général, la réponse de la plaque sous
une chargement bi-sinusoïdal donne wmn , 0. Puisque l’on choisi de respecter les condi-
tions aux limites simplement appuyées, le terme wmn peut être annulé si un chargement
de forme bi-cosinusoïdal, d’amplitude qmn

0 est ajouté. L’amplitude de qmn
0 est obtenue en

utilisant un multiplicateur de Lagrange. La matrice du système est alors de taille 11.
K C

CT 0




U

qmn
0

 =


F

0

 (3.40)

avec {C} un vecteur possédant un 1 sur sa huitième composante. Pour le cas dynamique,
la matrice de masse [M] est augmentée d’une ligne et d’une colonne de zéros pour
devenir une matrice de taille 11 × 11. Le détail des matrices [K] et [M] est donné dans
l’annexe B. On remarque aussi qu’il est possible de garder un chargement de la forme
q = qmn

0 sin(ξx) sin(ηy), alors, dans ce cas, les conditions aux limites simplement appuyées
ne sont plus respectées pour le cas le plus général.
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3.3/ MÉTHODE DES ÉLÉMENTS FINIS

La méthode des éléments finis est une méthode de discrétisation devenue de nos jours
incontournable. Elle a en effet pour avantage de présenter une certaine flexibilité pour
l’étude des structures de géométries complexes proches de cas réels de conception.
D’un point de vue général, le but est de résoudre numériquement des équations aux
dérivées partielles. La méthode est, tout comme la méthode de Rayleigh-Ritz présentée
dans la section 3.1, une méthode variationnelle qui cherche à minimiser une énergie (ou
selon les approches un résidu) et à produire une solution stable. La qualité de la solution
est en grande partie fonction de l’adéquation de l’interpolation aux variations des champs
du problème étudié. Par conséquent, la précision de la méthode est directement liée au
maillage utilisé et aux fonctions d’interpolation choisies.

Notre modèle faisant intervenir une formulation incorporant des dérivées secondes, les
éléments finis de plaque classiques ne sont pas adaptés à notre modèle. Nous propo-
sons ici trois éléments finis de plaques, issus de la littérature, adaptés à l’étude de notre
modèle. Le premier présente une écriture de la formulation avec sept degrés de liberté,
cependant soumise au verrouillage en cisaillement des plaques, les deux autres sont des
éléments à continuité C1.

3.3.1/ PRÉSENTATION GÉNÉRALE

Nous présentons ici plusieurs points essentiels de la méthode des éléments finis adaptée
au modèle générique décrit dans la section 2. D’un point de vue général, le but est de
satisfaire les équations d’équilibre (2.28). L’ensemble des éléments et méthodes présentés
dans cette section a été implémenté à l’aide du logiciel Matlab et a été validé par com-
paraison avec les résultats des autres codes et procédures à notre disposition. On définit
dans un premier temps, et ce pour tout élément :
– Le vecteur déplacement de l’élément {u}, c’est un vecteur qui regroupe les compo-

santes des déplacements de nœuds de l’élément. Dans le cas le plus simple, notre
modèle ayant cinq degrés de liberté par nœud, pour un élément classique à n nœuds,
le vecteur déplacement s’écrit :

{u} =



u1
1

u1
2

w1

γ1
13

γ1
23
...

γn
23


(3.41)

– Dans un élément, chaque variable correspond aux valeurs du champ de déplacements
aux noeuds. Des fonctions d’interpolation sont associées à chaque noeud. Pour un
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élément à n noeuds, une variable du champ de déplacements peut alors être estimée
à l’intérieur d’un élément avec la relation suivante :

u1 (x, y) =

n∑
i=1

ui
1Ni(x, y) (3.42)

Il est alors possible d’écrire une matrice [N ] organisée de la façon suivante,

[N ] =



N1(x, y) 0 0 0 0 Nn(x, y) 0 0 0 0
0 N1(x, y) 0 0 0 0 Nn(x, y) 0 0 0
0 0 N1(x, y) 0 0 . . . 0 0 Nn(x, y) 0 0
0 0 0 N1(x, y) 0 0 0 0 Nn(x, y) 0
0 0 0 0 N1(x, y) 0 0 0 0 Nn(x, y)


(3.43)

ce qui permet d’établir le déplacement en tout point de manière matricielle :

{u(x, y)} =
[N (x, y)

]
{u} (3.44)

– Classiquement, les fonctions d’interpolation sont exprimées dans un repère local ξ, η,
avec ξ et η variant de −1 à 1. Afin de pouvoir exprimer les dérivées des fonctions de
forme ∂Ni

∂x et ∂Ni
∂y , il faut alors utiliser la relation

 ∂Ni
∂x
∂Ni
∂y

 = [J]−1

 ∂Ni
∂ξ
∂Ni
∂η

 (3.45)

avec [J] la matrice jacobienne définie de la façon suivante :

[J] =

 ∂x
∂ξ

∂y
∂ξ

∂x
∂η

∂y
∂η

 =

 ∑n
i=1

∂Ni
∂ξ xi

∑n
i=1

∂Ni
∂ξ yi∑n

i=1
∂Ni
∂η xi

∑n
i=1

∂Ni
∂η yi

 (3.46)

=

 ∂N1
∂ξ . . . ∂Ni

∂ξ . . . ∂Nn
∂ξ

∂N1
∂η . . . ∂Ni

∂η . . . ∂Nn
∂η




x1 y1
...

...

xi yi
...

...

xn yn


(3.47)

– Le vecteur des déformations généralisées est obtenu à l’aide d’une matrice [Be] com-
posée des dérivées des fonctions de forme sur x et sur y (le détail de cette matrice est
propre à chaque élément et est donné pour chaque type d’élément présenté).

{ε} =
[
Be] {u} (3.48)
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3.3.1.1/ CONSTRUCTION DE LA MATRICE DE RIGIDITÉ ÉLÉMENTAIRE

Tout comme pour la méthode de Rayleigh-Ritz, il est possible de formuler la matrice de
rigidité à partir de l’énergie de déformation de l’élément. Celle-ci s’écrit :

Edef =
1
2

∫
V
σi jεi jdV (3.49)

=
1
2

∫
V
{σ}T {ε}dV =

1
2

$
V
{ε}T [D] {ε}dV (3.50)

Il est alors possible de réécrire Edef à l’aide de l’expression (3.48) ce qui donne,

Edef =
1
2
{u}T

(∫
V

[
Be]T [D]

[
Be] dV

)
{u} (3.51)

=
1
2

∫
V
{u}T

[
Ke] {u}dV (3.52)

La matrice de rigidité s’écrit donc :

[
Ke] =

∫
V

[
Be]T [D]

[
Be] dV (3.53)

La matrice [D] est obtenue à partir des matrices de comportement de l’équation (2.21).
Les matrices de comportement prenant en compte l’épaisseur, il faut alors intégrer sur la
surface S de l’élément. L’équation (3.53) devient alors :

[
Ke] =

"
S

[
Be]T


A B E 0
BT D F 0
ET FT G 0
0 0 0 H


[Be] dS (3.54)

Il est alors possible de décomposer l’écriture de [Ke] de la manière suivante :

[
Ke] =

"
S

[Be]T


A B E
BT D F
ET FT G

 [Be] +
[
BeT

s
]

[H]
[
Be

s
] dS (3.55)

=

"
S

([Be
m
]T [A]

[Be
m
]
+

[
Be

b

]T
[B]

[Be
m
]
+

[Be
m
]T [B]T

[
Be

b

]
+[

Be
b

]T
[D]

[
Be

b

]
+

[
Be

sd

]T
[E]

[
Be

m
]
+

[
Be

m
]T [E]

[
Be

sd

]
+[

Be
sd

]T
[F]

[
Be

b

]
+

[
Be

b

]T
[F]

[
Be

sd

]
+

[
Be

sd

]T
[G]

[
Be

sd

]
+

[
Be

s
]T [H]

[
Be

s
])

dS (3.56)
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3.3.1.2/ CONSTRUCTION DE LA MATRICE DE MASSE ÉLÉMENTAIRE

A partir de l’équation de la densité d’énergie surfacique (2.24), il est alors possible de
former une matrice de masse en réécrivant l’énergie cinétique pour un élément

Ecin =
1
2
{u}T

(∫
V

[
Be
Ξ

]T
[Ξ]

[
Be
Ξ

]
dS

)
{u} (3.57)

=
1
2

"
S
{u}T

[
Me] {u}dS (3.58)

avec

[Ξ] =



u1 u2 w −w,1 −w,2 γ13 γ23

u1 R 0 0 S 0 U11 U12

u2 0 R 0 0 S U21 U22

w 0 0 R 0 0 0 0
−w,1 S 0 0 T 0 V11 V12

−w,2 0 S 0 0 T V21 V22

γ13 U11 U21 0 V11 V21 W11 W12

γ23 U12 U22 0 V12 V22 W21 W22


(3.59)

De même que la matrice [Ke], il est alors possible d’exprimer la matrice masse [Me] en
fonction d’une intégrale de surface :

[
Me] =

"
S

[
Be
Ξ

]T
[Ξ]

[
Be
Ξ

]
dS (3.60)

3.3.1.3/ INTÉGRATION NUMÉRIQUE

Afin de réaliser l’intégration sur la surface S de l’élément, la méthode de quadrature de
Gauss est utilisée. Pour cela, chaque variable est exprimée dans un élément de référence
non déformé dans un repère (ξ, η) comme illustré pour un élément à neuf noeuds dans
la figure 3.6. Les bornes d’intégration dans l’élément de référence étant comprises entre
−1 et 1, l’intégration de(s) l’énergie(s) dans chaque élément dans ce repère se fait par la
méthode de la quadrature de Gauss. On écrit alors :

[
Ke] =

"
S

[
Be]T [D]

[
Be] dS (3.61)

=

n∑
g=1

[
Be(xg)

]T
[D]

[
Be(xg)

]
wg det

([
J(xg)

])
(3.62)

où
[
Be(xg)

]
représentent l’évaluation de la matrice Be aux coordonnées des points de

Gauss, wg les poids de Gauss correspondants et det
([

J(xg)
])

le déterminant de la matrice
Jacobienne. Le nombre et la position des points de Gauss sont choisis en fonction du
degré des polynômes des fonctions d’interpolation. On est parfois amené à l’adapter pour
tout ou partie des termes de l’énergie afin d’améliorer le comportement des éléments
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(techniques d’intégration réduite).

3.3.2/ FORMULATION SOUMISE AU BLOCAGE DES PLAQUES EN CISAILLEMENT

Nayak [nayak_higher_2005 ] propose un élément à neuf nœuds isoparamétrique adapté
au modèle de Reddy. L’écriture du modèle de Reddy dans les travaux de Nayak est simi-
laire à notre modèle générique. Nous proposons d’étendre, par analogie, la formulation
proposée par Nayak à notre modèle générique.

L’élément est composé de sept degrés de liberté par nœud séparant ainsi les rotations
ϕα des déformations de cisaillement γα3. Les déplacements s’écrivent donc en fonction
des fonctions d’interpolation de l’élément :

u1 =

9∑
i=1

Niui
1, u2 =

9∑
i=1

Niui
2 , w =

9∑
i=1

Niwi , ϕ1 =

9∑
i=1

Niϕ
i
1 ,

ϕ2 =

9∑
i=1

Niϕ
i
2 , γ13 =

9∑
i=1

Niγ
i
13 , γ23 =

9∑
i=1

Niγ
i
23

Par ailleurs, on sait que
ϕα = γα3 − w,α (3.63)

d’où
− w,αβ = ϕα,β − γα3,β (3.64)

Il est alors possible d’exprimer les vecteurs des déformations généralisées {ε}, {κ}, {Γ} et
{γ} de l’équation (2.20) en fonction des fonctions d’interpolation :

{ε} =
[
Be

m
]
{δ} (3.65)

{κ} =
[
Be

b

]
{δ} (3.66)

{Γ} =
[
Be

sd

]
{δ} (3.67)

{γ} =
[
Be

s
]
{δ} (3.68)

Les matrices
[
Be

m
]
,
[
Be

b

]
,
[
Be

sd

]
et

[
Be

s
]

relient les déformations généralisées aux degrés de
liberté associés à chaque nœud. Ces matrices sont définies ainsi :

[
Be

m
]

=


ui

1 ui
2 wi ϕi

1 ϕi
2 γi

13 γi
23

ε11 Ni
,1 0 0 0 0 0 0

ε22 · · · 0 Ni
,2 0 0 0 0 0 · · ·

ε12 Ni
,2 Ni

,1 0 0 0 0 0

 (3.69)
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[
Be

b

]
=


ui

1 ui
2 wi ϕi

1 ϕi
2 γi

13 γi
23

−w,11 0 0 0 Ni
,1 0 Ni

,1 0
−w,22 · · · 0 0 0 0 Ni

,2 0 Ni
,2 · · ·

−w,12 0 0 0 1
2 Ni

,2
1
2 Ni

,2
1
2 Ni

,2
1
2 Ni

,2

 (3.70)

[
Be

sd

]
=



ui
1 ui

2 wi ϕi
1 ϕi

2 γi
13 γi

23

γ13,1 0 0 0 0 0 Ni
,1 0

γ23,2 · · · 0 0 0 0 0 0 Ni
,2

γ13,2 0 0 0 0 0 Ni
,2 0 · · ·

γ23,1 0 0 0 0 0 0 Ni
,1

 (3.71)

[
Be

s
]

=


ui

1 ui
2 wi ϕi

1 ϕi
2 γi

13 γi
23

γ13 · · · 0 0 Ni
,1 Ni 0 0 0

γ23 0 0 Ni
,2 0 Ni 0 0 · · ·

 (3.72)

Les fonctions d’interpolation habituellement associées à un élément isoparamétrique à
neuf nœuds sont définies dans l’équation (3.73) avec la numérotation associée de la fi-
gure 3.6.

N1 = 1
4ηξ (−1 + ξ) (−1 + η)

N2 = − 1
2η (−1 + ξ) (1 + ξ) (−1 + η)

N3 = 1
4ηξ (1 + ξ) (−1 + η)

N4 = − 1
2ξ (−1 + η) (1 + η) (1 + ξ)

N5 = 1
4ηξ (1 + ξ) (1 + η)

N6 = − 1
2η (−1 + ξ) (1 + ξ) (1 + η)

N7 = 1
4ηξ (−1 + ξ) (1 + η)

N8 = − 1
2ξ (−1 + η) (1 + η) (−1 + ξ)

N9 = (−1 + ξ) (1 + ξ) (−1 + η) (1 + η)

(3.73)

Cette formulation est cependant soumise au verrouillage en cisaillement. C’est à dire

1 2 3

4

567

8
9

FIGURE 3.6 – Numérotation des noeuds de l’élément isoparamétrique à neuf nœuds.

que lorsque la plaque est fortement élancée, celle-ci se "verrouille" et les déplacements
de la solution sont alors quasi nuls. Selon Polit [polit_verrouillage_2007 ], les pro-
blèmes de verrouillage apparaissent lorsque la convergence n’est pas indépendante



61

de l’épaisseur de l’élément. Le phénomène apparait généralement lorsque la plaque
étudiée est fortement élancée. Une des méthodes classiques pour éviter ce phéno-
mène est de sous interpoler le degré de liberté en cisaillement, c’est ce qui est pro-
posé par Nayak [nayak_higher_2005 ] en implémentant une procédure d’interpola-
tion mixte initialement proposée par Bathe [bathe_finite_1982, bathe_fournode_1985,
bathe_formulation_1986 ].

Bien que viable, le principal problème de cette formulation est sa complexité de mise
en œuvre. En effet, la procédure de Bathe nécessite l’implémentation d’une méthode
d’interpolation difficile à mettre en œuvre et est par conséquent, une solution que nous
n’avons pas réussi à valider pour la résolution de notre problème.

3.3.3/ FORMULATION À L’AIDE D’ÉLÉMENTS FINIS À CONTINUITÉ C1

Dans le but de permettre l’implémentation directe du modèle, et en respectant l’équa-
tion d’équilibre (2.28b), il est nécessaire d’évaluer la dérivée seconde de la flèche w,αβ

aux points de Gauss. Or, les éléments finis classiques, possèdent des fonctions d’inter-
polation linéaires ou quadratiques, nécessitent la continuité des dérivées premières des
fonctions d’interpolation de l’élément. Pour cela, il faut utiliser des fonctions d’interpolation
à continuité C1. C’est à dire que les fonctions sont continues entre les éléments ainsi que
leurs dérivées premières. Par opposition, les fonctions des éléments usuels sont dites
à continuité C0, c’est à dire qu’elles sont continues entre les éléments mais pas leurs
dérivées.

Les éléments à continuité d’ordre supérieur à C0 font généralement appel à des fonctions
d’interpolation de type polynômes d’Hermite, c’est à dire que les fonctions d’interpolations
et leur dérivées sont associées à des degrés de liberté indépendants.

3.3.3.1/ ÉLÉMENT DE FOX-BOGNER-SCHMIDT

L’élément de Fox-Bogner-Schmidt [bogner_generation_1966 ] est un quadrangle à
quatre noeuds avec des fonctions d’interpolation de type Hermite à continuité C1. C’est
le seul élément à continuité C1 capable de fonctionner sur un maillage de quadrangles
réguliers.

Fonctions de formes de l’élément Fox-Bogner-Schmidt

L’équation (3.74) décrit les fonctions de forme de l’élément linéaire Q4. Ces fonctions sont
associées aux degrés de liberté pour lesquels la continuité C1 n’est pas nécessaire. Les
équations (3.75), (3.76), (3.77) et (3.78) correspondent respectivement aux degrés de libertés
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1 2

34

FIGURE 3.7 – Représentation de l’élément de Fox-Bogner-Schmidt. Les cercles remplis
de noir représentent les points, les autres cercles représentent la continuité des dérivées,
les flèches représentent les dérivées partielles croisées.

w, w,1, w,2 et w,12. La figure 3.8 illustre les fonctions de formes N1H1, N1H2, N1H3 et N1H4.

N1L = (1/4 × (−1 + ξ)) × (−1 + η)
N2L = −(1/4 × (ξ + 1)) × (−1 + η)
N3L = −(1/4 × (−1 + ξ)) × (η + 1)
N4L = (1/4 × (ξ + 1)) × (η + 1)

(3.74)

N1H1 = 1/16 × (1 − ξ)2 × (2 + ξ) × (1 − η)2 × (2 + η)
N2H1 = 1/16 × (1 + ξ)2 × (2 − ξ) × (1 − η)2 × (2 + η)
N3H1 = 1/16 × (1 − ξ)2 × (2 + ξ) × (1 + η)2 × (2 − η)
N4H1 = 1/16 × (1 + ξ)2 × (2 − ξ) × (1 + η)2 × (2 − η)

(3.75)

N1H2 = 1/16 × (1 − ξ2) × (1 − ξ) × (1 − η)2 × (2 + η)
N2H2 = 1/16 × (−1 + ξ2) × (1 + ξ) × (1 − η)2 × (2 + η)
N3H2 = 1/16 × (1 − ξ2) × (1 − ξ) × (1 + η)2 × (2 − η)
N4H2 = 1/16 × (−1 + ξ2) × (1 + ξ) × (1 + η)2 × (2 − η)

(3.76)

N1H3 = 1/16 × (1 − ξ)2 × (2 + ξ) × (1 − η2) × (1 − η)
N2H3 = 1/16 × (1 + ξ)2 × (2 − ξ) × (1 − η2) × (1 − η)
N3H3 = 1/16 × (1 − ξ)2 × (2 + ξ) × (−1 + η2) × (1 + η)
N4H3 = 1/16 × (1 + ξ)2 × (2 − ξ) × (−1 + η2) × (1 + η)

(3.77)

N1H4 = 1/16 × (1 − ξ2) × (1 − ξ) × (1 − η2) × (1 − η)
N2H4 = 1/16 × (−1 + ξ2) × (1 + ξ) × (1 − η2) × (1 − η)
N3H4 = 1/16 × (1 − ξ2) × (1 − ξ) × (−1 + η2) × (1 + η)
N4H4 = 1/16 × (−1 + ξ2) × (1 + ξ) × (−1 + η2) × (1 + η)

(3.78)

Les dérivées secondes ∂2Ni

∂x2 , ∂2Ni

∂y2 et ∂2Ni

∂x∂y sont obtenues de la même manière que les
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FIGURE 3.8 – Fonctions de formes N1H1, N1H2, N1H3 et N1H4.

dérivées premières en utilisant la matrice hessienne comme illustré dans l’équation (3.80).
∂2

∂ξ2

∂2

∂η2

∂2

∂ξ∂η

 =



(
∂x
∂ξ

)2 (
∂y
∂ξ

)2
2 ∂y
∂ξ

∂x
∂ξ(

∂x
∂η

)2 (
∂y
∂η

)2
2 ∂y
∂η

∂x
∂η

∂x
∂η

∂x
∂ξ

∂y
∂η

∂y
∂ξ

∂y
∂η

∂x
∂ξ + ∂x

∂η
∂y
∂ξ




∂2

∂x2

∂2

∂y2

∂2

∂x∂y

 +


∂2 x
∂ξ2

∂2y
∂ξ2

∂2 x
∂η2

∂2y
∂η2

∂2 x
∂ξ∂η

∂2y
∂ξ∂η




∂
∂x

∂
∂y

 (3.79)


∂2

∂x2

∂2

∂y2

∂2

∂x∂y

 =



(
∂ξ
∂x

)2 (
∂η
∂x

)2
2∂η∂x

∂ξ
∂x(

∂ξ
∂y

)2 (
∂η
∂y

)2
2∂η∂y

∂ξ
∂y

∂ξ
∂y

∂ξ
∂x

∂η
∂y

∂η
∂x

∂η
∂y

∂ξ
∂x +

∂ξ
∂y

∂η
∂x






∂2

∂ξ2

∂2

∂η2

∂2

∂ξ∂η

 −


∂2 x
∂ξ2

∂2y
∂ξ2

∂2 x
∂η2

∂2y
∂η2

∂2 x
∂ξ∂η

∂2y
∂ξ∂η




∂
∂x

∂
∂y


 (3.80)
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Les matrices Be
m, Be

b, Be
s et Be

sd présentées ci-dessous peuvent être utilisées avec l’équa-
tion (3.56) afin de générer la matrice de rigidité élémentaire [Ke].

Be
m =


ui

1 ui
2 wi wi

,1 wi
,2 wi

,12 γi
1 γi

2

ε11 NiL
,1 0 0 0 0 0 0 0

ε22 · · · 0 NiL
,2 0 0 0 0 0 0 · · ·

ε12 Ni`
,2 NiL

,1 0 0 0 0 0 0

 (3.81)

Be
b =


ui

1 ui
2 wi wi

,1 wi
,2 wi

,12 γi
1 γi

2

−w,11 0 0 −NiH1
,11 −NiH2

,11 −NiH3
,11 −NiH4

,11 0 0
−w,22 · · · 0 0 −NiH1

,22 −NiH2
,22 −NiH3

,22 −NiH4
,22 0 0 · · ·

−2w,12 0 0 −2NiH1
,12 −2NiH2

,12 −2NiH3
,12 −2NiH4

,12 0 0

 (3.82)

Be
s =


ui

1 ui
2 wi wi

,1 wi
,2 wi

,12 γi
1 γi

2

γ13 · · · 0 0 0 0 0 0 NiL 0
γ23 0 0 0 0 0 0 0 NiL · · ·

 (3.83)

Be
sd =



ui
1 ui

2 wi wi
,1 wi

,2 wi
,12 γi

1 γi
2

γ13,1 0 0 0 0 0 0 NiL
,1 0

γ23,2 · · · 0 0 0 0 0 0 0 NiL
,2

γ13,2 0 0 0 0 0 0 NiL
,2 0 · · ·

γ23,1 0 0 0 0 0 0 0 NiL
,1

 (3.84)

L’interpolation de la flèche s’écrit alors :

w(ξ, η) =

4∑
n=1

wnNnH1(ξ, η) +

4∑
n=1

wn
,ξN

nH2(ξ, η)+

4∑
n=1

wn
,ηNnH3(ξ, η) +

4∑
n=1

wn
,ξηNnH4(ξ, η)

(3.85)

3.3.3.2/ TRIANGLE À 21 DEGRÉS DE LIBERTÉ : ÉLÉMENT D’ARGYRIS

Cet élément, tout comme l’élément de Fox-Bogner-Schmidt présenté à la section 3.3.3.1,
assure la continuité des fonctions d’interpolation, leur dérivées, ainsi que leurs déri-
vées secondes. Le maillage de n’importe quelle surface s’appuyant sur un maillage
de son contour est toujours possible en triangles. Même si on souhaite privilégier les
quadrangles, ils peuvent être indispensables à la réalisation de certains maillages, au
moins localement. Cela confère à l’élément triangle un caractère plus général. Aussi
connu sous le nom de Triangle d’Argyris, il est présenté pour la première fois par Ar-
gyris [argyris_tuba_1968 ]. A noter que Bell [bell_refined_1969 ] propose lui aussi un
triangle à continuité C1 à 18 degrés de liberté sans normale sortante. Le polynôme des
fonctions de formes de cet élément est alors contraint à une variation cubique, et il y a
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donc 6 degrés de liberté à chaque nœud. Cet élément triangulaire, développé par Ar-
gyris [Argyris1968 ], est décrit par Zienkiewicz [zienkiewicz_finite_2000 ]. Il assure la
continuité aux noeuds des degrés de liberté suivants :

w,
∂w
∂x
,
∂w
∂y
,
∂2w
∂x2 ,

∂2w
∂y2 ,

∂2w
∂x∂y

.

Cette formulation comprend donc 18 degrés de liberté. D’après le triangle de Pascal, un
polynôme du cinquième ordre complet comprend 21 monômes. Pour compléter la liste
des variables, on rajoute la dérivée normale ∂wn/∂n comme degré de liberté aux noeuds
des milieux d’arêtes. Celle-ci est définie par :

∂wn

∂n
= cos φn

∂wn

∂x
+ sin φn

∂wn

∂y
(3.86)

Les coefficients de chaque polynôme peuvent alors s’exprimer au travers d’une matrice
[C] de taille 21 × 21 de la façon suivante :

[C] =



α1 α2 α3 α4 · · · α5

w1 1 x1 y1 x2
1 · · · y5

1

w2 1 x2 y2 x2
2 · · · y5

2

w3 1 x3 y3 x2
3 · · · y5

3
∂w1
∂x 0 1 0 2x1 · · · 0
...

...
...

∂w1
∂y 0 0 1 0 · · · 5y4

1
...

...
...

∂2w1
∂x2 0 0 0 2 · · · 0
...

...
...

∂2w1
∂y2 0 0 0 0 · · · 20y4

1
...

...
...

∂2w1
∂x∂y 0 0 0 0 · · · 0
...

...
...

∂w3
∂n 0 cos φ3 sin φ3 2x3 cos φ3 · · · 5y4

3 sin φ3



(3.87)

Il est alors possible de déterminer les fonctions de forme d’un triangle quelconque défini
par les coordonnées de ses noeuds xn, yn en obtenant les coefficients du polynôme du
cinquième ordre dans un vecteur {α} :

{α} =
[
C−1

] {
ae} (3.88)
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Il est alors possible de formuler la matrice [Bb] de l’équation 3.82 en un point de coor-
données x, y de la façon suivante :

[Bb] = [Q]
[
C−1

]
(3.89)

avec

[Q] =


0 0 0 −2 0 0 −6x −2y 0 · · · −2y3 0 0
0 0 0 0 0 −2 0 0 −2x · · · −6x2y −12xy2 −20y3

0 0 0 0 −2 0 0 −4x −4y · · · −12xy2 −8y3 0

 (3.90)



4
RÉSULTATS NUMÉRIQUES

Après avoir présenté un modèle de plaque générique dans le chapitre 2 ainsi que dif-
férentes méthodes de discrétisation dans le chapitre 3, nous proposons ici plusieurs
applications et études illustrant le fonctionnement du modèle. Nous présentons, dans
un premier temps, une validation du modèle ainsi qu’une étude comparative de diffé-
rents jeux de warping functions. Les résultats numériques obtenus sont la flèche pour
un chargement statique et la première fréquence de résonance pour le cas dynamique.
La méthode de Navier est utilisée pour obtenir les résultats qui permettent de valider le
fonctionnement du modèle. Par la suite, à l’aide de la méthode de Rayleigh-Ritz, nous
présentons une étude vibroacoustique et énergétique d’une plaque traitée avec un patch
PCLD, soumise à une onde plane progressive. Nous présentons la réponse de la plaque
sous forme de vitesse quadratique moyenne accompagnée d’une étude montrant l’origine
de la dissipation énergétique pour un patch PCLD. Enfin, nous proposons une méthode
d’identification des propriétés des matériaux viscoélastiques par méthode inverse, faisant
appel à notre modèle de plaque couplé à un algorithme génétique.

4.1/ VALIDATION DU MODÈLE AVEC LA MÉTHODE DE NAVIER

La méthode de Navier étant réservée aux plaques homogènes, nous étudions ici diffé-
rents stratifiés modélisés avec différents jeux de warping functions. À des fins de compa-
raison, la solution tridimensionnelle exacte est calculée pour chaque cas test. Le charge-
ment est alors également réparti sur les plans supérieurs et inférieurs de chaque plaque.
De plus, cette solution exacte est utilisée pour obtenir des warping functions avec la
méthode décrite dans la section 2.7.5. La méthode de Navier permet aussi d’obtenir la
première fréquence de résonance pour chaque stratifié pour le cas dynamique. Cette
section propose l’étude de cinq stratifiés dont un panneau sandwich. Seulement deux
matériaux sont utilisés, un matériau composite isotrope transverse et un matériau nid
d’abeille pour le panneau sandwich. Leurs propriétés mécaniques sont données dans les
tables 4.1 où les indices L et T indiquent les directions longitudinales et transverses à la
direction des fibres.
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EL (Pa) ET (Pa) GLT (Pa) GTT (Pa) νLT = νTT ρc (kg.m-3)
25ET 106 0, 5ET 0, 2ET 0, 25 1500

Ec
1 = Ec

2 (Pa) Ec
3 (Pa) Gc

12 (Pa) Gc
23 = Gc

13 (Pa) νc
12 = νc

13 = νc
23 ρc (kg.m-3)

4 × 104 5 × 105 1, 6 × 104 6 × 104 0, 25 100

TABLE 4.1 – Propriétés mécaniques des matériaux utilisés.

Les simulations sont effectuées sur une plaque rectangulaire de dimensions a et b. Trois
variables sont considérées et comparées à celles obtenues avec les solutions analytiques
de type Pagano :
– La flèche w est adimensionnalisée à l’aide de l’équation (4.1), h étant l’épaisseur totale

de la plaque et q0 la pression de chargement.

w∗ =
100wEre f h3

q0l4x
(4.1)

– La première fréquence de résonance est adimensionnalisée en utilisant l’équation (4.2).

ω∗ = (ωl2x/h)
√
ρre f /Ere f (4.2)

– La variation de la contrainte de cisaillement transverse aux points A et B décrits dans
la figure 2.7, qui elle n’est pas adimensionnalisée.

On prendra Ere f = Ec
T et ρre f = ρc pour les stratifiés, et Ere f = E f

T et ρre f = ρ f pour le
panneau sandwich.

La méthode de Navier a été implémentée à l’aide du logiciel de calcul Maple. Les résultats
obtenus avec les warping functions issues des solutions analytiques (notées 3D WF)
et celles obtenues avec la procédure itérative (notées Iterative) sont comparés à ceux
obtenus avec les warping functions correspondant aux modèles classiques (fonctions
données dans la section 2.7).

4.1.1/ PLAQUE COMPOSITE RECTANGULAIRE

Cette plaque composite est composée de trois plis, dont les propriétés sont mentionnées
dans la table 4.1, avec une séquence d’empilement [0/90/0] et b = 3a.

Parmi les modèles implémentés, nous pouvons identifier trois types de modèles diffé-
rents, groupés en fonction des hypothèses sur lesquels ils sont basés. La première ca-
tégorie est celle des modèles dits classiques, qui pour cette étude, ne comprend que
le modèle de Mindlin-Reissner (ici noté FSDT). La seconde catégorie regroupe les mo-
dèles dont les warping functions sont basées sur des hypothèses mixtes (déplacements
et contraintes). Pour cette étude, cela inclut les modèles de Reddy (noté HSDT), Wood-
cock et Pai (noté EHOPT). La dernière catégorie de modèle est celle dont les warping
functions sont issues des équations d’équilibre de la mécanique ; ce qui inclut les mo-
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dèles notés 3D WF et Iterative.

Les résultats statiques et dynamiques présentés dans les tables 4.2 et 4.3 montrent que
les deux modèles dont les warping functions sont issues des équations d’équilibre de
la mécanique donnent des résultats très satisfaisants pour tous les élancements. Ces
deux modèles, générés avec deux méthodes très différentes, donnent des résultats quasi
identiques. Ceci est principalement dû au fait que les deux modèles sont basés sur les
équations d’équilibre de la mécanique, ce qui explique la concordance avec les résultats
issus de la solution analytique. La figure 4.1 montre cette même concordance et aide
à soutenir cette conclusion. La différence avec la solution analytique est expliquée par
le fait que, pour celle-ci, le choix de diviser le chargement de la plaque entre les plans
inférieurs et supérieurs du stratifié induit que les contraintes transverses σ33 ne sont
pas nulles. Ainsi, en fonction des cas, lorsque l’importance relative des σ33 par rapport
aux autres degrés de liberté devient prédominante, l’hypothèse des contraintes planes
considérée dans le modèle ne peut être respectée.

a/h = 2 4 10 100

Modèle w Erreur w Erreur w Erreur w Erreur
FSDT 6, 6164 −18, 98% 2, 0547 −27, 17% 0, 75314 −18, 04% 0, 50588 −0, 35%
HSDT 7, 8943 −3, 33% 2, 6411 −6, 38% 0, 96222 4, 71% 0, 50700 −0, 13%

Woodcock 7, 8130 −4, 32% 2, 7172 −3, 68% 0, 88102 −4, 12% 0, 50721 −0, 09%
EHOPT 6, 4960 −20, 45% 2, 7331 −3, 12% 0, 91831 −0, 07% 0, 50766 0, 00%
3D WF 8, 4448 3, 42% 2, 8458 0, 88% 0, 92059 0, 18% 0, 50767 0, 00%
Iterative ne converge pas 2, 8459 0, 88% 0, 92059 0, 18% 0, 50767 0, 00%

Solution analytique 8, 1659 2, 8211 0, 91891 0, 50766

TABLE 4.2 – Comparaison de la déflection statique entre les différents modèles pour une
plaque composite [0/90/0] pour différents élancements.

−1.5 −1 −0.5 0
−h/2

0

h/2

σ13(0, b/2)

−0.1 −5 · 10−2 0

σ23(a/2, 0)

Solution analytique 3D WF Iterative

FIGURE 4.1 – Contraintes de cisaillement transverse aux points A et B pour une plaque
composite [0/90/0] avec a/h = 4.
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a/h = 2 4 10 100

Modèle ω Erreur ω Erreur ω Erreur ω Erreur
FSDT 3, 8633 12, 97% 6, 9503 17, 60% 11, 4970 10, 47% 14, 0502 0, 11%
HSDT 3, 5336 3, 33% 3, 1331 3, 77% 10, 7501 3, 29% 14, 0435 0, 07%

Woodcock 3, 5485 3, 76% 6, 0461 2, 19% 10, 6353 2, 19% 14, 0407 0, 05%
EHOPT 3, 8845 13, 59% 6, 0265 1, 97% 10, 4182 0, 10% 14, 0344 0, 00%
3D WF 3, 4197 0, 00% 5, 9084 0, 03% 10, 4054 0, 02% 14, 0342 0, 00%
Iterative ne converge pas 5, 9084 0, 03% 10, 4053 0, 02% 14, 0342 0, 00%

Solution analytique 3, 4198 5, 9100 10, 4078 14, 0343

TABLE 4.3 – Comparaison de la première fréquence de résonance entre les différents
modèles pour une plaque composite rectangulaire [0/90/0] pour différents élancements.

Par ailleurs, nous remarquons que, pour le cas dynamique, les modèles 3D WF et Ite-
rative donnent des résultats très satisfaisants. Ceci tend à confirmer l’hypothèse du non
respect de la condition de contraintes planes à cause du chargement appliqué pour la
solution analytique ; en effet, la cas dynamique ne faisant pas intervenir de chargement,
ce problème n’est donc pas présent.

4.1.2/ PANNEAU SANDWICH CARRÉ

Dans le but d’étudier le comportement de structures comportant une forte variation de la
rigidité au travers de l’épaisseur, nous nous proposons ici d’étudier un panneau sandwich
carré avec une épaisseur de plis définie par h1 = h3 = 0, 1h et h2 = 0, 8h. Les peaux
sont constituées d’un pli du matériau composite utilisé pour les autres configurations et
le cœur est composé d’un nid d’abeille dont les propriétés sont aussi données dans la
table 4.1.

a/h = 2 4 10 100

Modèle w Erreur w Erreur w Erreur w Erreur
FSDT 0, 50904 44, 74% 0, 16645 45, 57% 0, 05797 34, 15% 0, 03536 0, 93%
HSDT 0, 85343 7, 34% 0, 28349 7, 30% 0, 08252 6, 27% 0, 03563 0, 18%

Woodcock 0, 90224 2, 05% 0, 30453 0, 42% 0, 08773 0, 34% 0, 03569 0, 01%
EHOPT 0, 88896 3, 49% 0, 30416 0, 54% 0, 08971 0, 14% 0, 03569 0, 00%
3D WF 0, 90893 1, 32% 0, 30636 0, 18% 0, 08817 0, 16% 0, 03570 0, 00%
Iterative ne converge pas 0, 30638 0, 19% 0, 08817 0, 16% 0, 03570 0, 00%

Solution analytique 0, 92108 0, 30581 0, 08803 0, 03570

TABLE 4.4 – Comparaison de la déflection statique entre les différents modèles pour le
panneau sandwich avec différents élancements.
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−1 −0.5 0
−h/2

0

h/2

σ13(0, b/2)

−0.4 −0.2 0

σ23(a/2, 0)

Solution analytique 3D WF Iterative

FIGURE 4.2 – Contraintes de cisaillement transverse aux points A et B pour un panneau
sandwich avec a/h = 4 pour les trois méthodes implémentées.

a/h = 2 4 10 100

Modèle ω Erreur ω Erreur ω Erreur ω Erreur
FSDT 6, 9339 29, 88% 12, 2334 33, 77% 21, 0958 22, 82% 27, 2469 0, 36%
HSDT 5, 4307 1, 72% 9, 4351 3, 17% 17, 7164 3, 14% 27, 1721 0, 09%

Woodcock 5, 2900 0, 92% 9, 1084 0, 40% 17, 1850 0, 05% 27, 1491 0, 00%
EHOPT 5, 3281 0, 20% 9, 1152 0, 33% 17, 1681 0, 05% 27, 1481 0, 00%
3D WF 5, 2917 0, 88% 9, 0832 0, 64% 17, 1427 0, 20% 27, 1471 0, 00%
Iterative ne converge pas 9, 0840 0, 88% 17, 1427 0, 20% 27, 1471 0, 00%

Solution analytique 5, 3389 9, 1452 17, 1766 27, 1479

TABLE 4.5 – Comparaison de la première fréquence de résonance entre les différents
modèles pour un panneau sandwich tri-couche pour différents élancements.

Nous pouvons remarquer que pour ce cas test, les warping functions du modèle de
Woodcock sont particulièrement adaptées car elles peuvent traduire la forte variation
des déformations de cisaillement transverse. Le modèle de Woodcock pose pour hypo-
thèse la constance des contraintes de cisaillement transverse. En observant la variation
des contraintes de cisaillement transverse sur la figure 4.2, nous pouvons voir que cette
hypothèse (de constance des contraintes de cisaillement transverse) permet une approxi-
mation satisfaisante de la répartition de ces contraintes. Nous pouvons donc en conclure
que, pour les structures à fort ratio de module de Young entre les couches, le modèle de
Woodcock donne des résultats satisfaisants. Nous montrons dans la section 4.2 qu’il est
par exemple bien adapté à la simulation de plaques traitées avec des patchs PCLD. Par
ailleurs, ce modèle, au contraire des modèles dont les warping functions sont issues des
lois de l’élasticité tridimensionnelle, ne nécessite pas de calculs préalables. Il est donc
simple à implémenter.
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4.1.3/ PLAQUE COMPOSITE BI-COUCHE À SÉQUENCE D’EMPILEMENT ANTISY-
MÉTRIQUE

Nous considérons ici une plaque composite carrée (b = a) composée de deux couches
d’épaisseurs égales dont la séquence d’empilement est antisymétrique [−15/15].

a/h = 2 4 10 100

Modèle w Erreur w Erreur w Erreur w Erreur
FSDT 4, 3448 4, 61% 1, 5762 7, 60% 0, 77629 3, 29% 0, 62204 0, 04%
HSDT 4, 3110 5, 35% 1, 6594 2, 73% 0, 79522 0, 93% 0, 62224 0, 01%

Woodcock 3, 8609 15, 23% 1, 5082 11, 59% 0, 76841 4, 27% 0, 62197 0, 06%
EHOPT 3, 9837 12, 54% 1, 6197 5, 05% 0, 79522 0, 93% 0, 62222 0, 02%
3D WF 4, 8403 6, 27% 1, 7413 2, 08% 0, 80668 0, 49% 0, 62235 0, 00%
Iterative ne converge pas 1, 7415 2, 09% 0, 80670 0, 50% 0, 62235 0, 00%

Solution analytique 4, 5548 1, 7059 0, 80272 0, 62235

κ(%) 6, 22% 1, 24% 0, 07% 0, 00%

TABLE 4.6 – Comparaison de la déflection statique entre les différents modèles pour
une plaque composite avec une séquence d’empilement antisymétrique [−15/15] pour
différents élancements.
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FIGURE 4.3 – Contraintes de cisaillement transverse aux points A et B pour une plaque
composite avec une séquence d’empilement antisymétrique [+15/−15] avec a/h = 4 pour
les trois méthodes implémentées.
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a/h = 2 4 10 100

Modèle ω Erreur ω Erreur ω Erreur ω Erreur
FSDT 4, 7206 5, 62% 7, 7953 4, 57% 11, 2179 1, 74% 12, 6702 0, 03%
HSDT 4, 7612 6, 53% 7, 6324 2, 38% 11, 0928 0, 60% 12, 6749 0, 01%

Woodcock 4, 9993 11, 85% 7, 9690 6, 90% 11, 2752 2, 26% 12, 6770 0, 02%
EHOPT 4, 9478 10, 70% 7, 7274 3, 66% 11, 1163 0, 81% 12, 6752 0, 01%
3D WF 4, 4827 0, 30% 7, 4377 0, 23% 11, 0126 0, 13% 12, 6738 0, 00%

Solution analytique 4, 4695 7, 4548 11, 0265 12, 6740

TABLE 4.7 – Comparaison de la première fréquence de résonance entre les différents
modèles pour une plaque composite avec une séquence d’empilement antisymétrique
[−15/15] pour différents élancements

4.1.4/ PLAQUE COMPOSITE AVEC UN SEUL PLI

Bien que cette structure puisse sembler simple à simuler, nous constatons en observant
la table 4.8 que les modèles dont les warping functions sont issues des équations d’équi-
libre de la mécanique (notés 3D WF et Iterative) semblent être moins performants que
les modèles classique tel que la HSDT. Ceci peut s’expliquer une nouvelle fois par le non
respect des conditions de contraintes planes (nécessaires à notre modèle de plaque).
En effet, dans la solution analytique, les σ33 sont non nuls. La raison pour laquelle les
modèles classiques obtiennent de meilleurs résultats pour de faibles élancements n’est
pas encore bien comprise, une analyse plus approfondie est nécessaire.

a/h = 2 4 10 100

Modèle w Erreur w Erreur w Erreur w Erreur
FSDT 4, 3108 3, 63% 1, 4643 8, 42% 0, 60418 4, 82% 0, 43300 0, 08%
HSDT 4, 5250 1, 16% 1, 6205 1, 35% 0, 63708 0, 36% 0, 43335 0, 00%

Woodcock 4, 3108 3, 63% 1, 4643 8, 42% 0, 60418 4, 82% 0, 43300 0, 08%
EHOPT 4, 5250 1, 16% 1, 6205 1, 35% 0, 63708 0, 36% 0, 43335 0, 00%
3D WF 4, 7796 6, 85% 1, 6297 1, 92% 0, 63711 0, 37% 0, 43335 0, 00%
Iterative ne converge pas 1, 6298 1, 93% 0, 63714 0, 37% 0, 43335 0, 00%

Solution analytique 4, 4730 1, 5989 0, 63477 0, 43333

TABLE 4.8 – Comparaison de la déflection statique entre les différents modèles pour une
plaque composite composée d’un seul pli pour différents élancements.
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FIGURE 4.4 – Contraintes de cisaillement transverse aux points A et B pour une plaque
composite composée d’un seul pli avec a/h = 4 pour les trois méthodes implémentées.

a/h = 2 4 10 100

Modèle ω Erreur ω Erreur ω Erreur ω Erreur
FSDT 4, 7281 4, 85% 8, 1438 5, 17% 12, 7948 2, 59% 15, 1897 0, 00%
HSDT 4, 6229 2, 52% 7, 7526 0, 12% 12, 4640 0, 06% 15, 1896 0, 00%

Woodcock 4, 7281 4, 85% 8, 1438 5, 17% 12, 7948 2, 59% 15, 1897 0, 00%
EHOPT 4, 6229 2, 52% 7, 7526 0, 12% 12, 4640 0, 06% 15, 1896 0, 00%
3D WF 4, 5043 0, 11% 7, 7311 0, 16% 12, 4636 0, 06% 15, 1896 0, 00%
Iterative ne converge pas 7, 7311 0, 16% 12, 4636 0, 06% 15, 1896 0, 00%

Solution analytique 4, 5094 7, 7437 12, 4713 15, 1897

TABLE 4.9 – Comparaison de la première fréquence de résonance entre les différents
modèles pour une plaque composite composée d’un seul pli pour différents élancements.

4.1.5/ PLAQUE COMPOSITE AVEC UNE SÉQUENCE D’EMPILEMENT SYMÉTRIQUE

Nous considérons ici une plaque composite carrée dont la séquence d’empilement est
symétrique [0/30/0]. Cette configuration est choisie puisqu’elle n’implique aucune simpli-
fication dans le système linéaire (3.40), i. e. la matrice [K] n’a pas de terme nul.
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a/h = 2 4 10 100

Modèle w Erreur w Erreur w Erreur w Erreur
FSDT 4, 3110 7, 72% 1, 4700 13, 79% 0, 59897 8, 33% 0, 42339 0, 14%
HSDT 4, 7450 1, 57% 1, 7025 0, 15% 0, 64701 0, 97% 0, 42390 0, 02%

Woodcock 4, 4049 5, 71% 1, 5616 8, 42% 0, 62084 4, 98% 0, 42363 0, 08%
EHOPT 4, 5986 1, 56% 1, 7138 0, 51% 0, 65454 0, 18% 0, 42399 0, 00%
3D WF 4, 9866 6, 74% 1, 7375 1, 90% 0, 65579 0, 37% 0, 42400 0, 00%
Iterative ne converge pas 1, 7376 1, 91% 0, 65579 0, 37% 0, 42400 0, 00%

Solution analytique 4, 4730 1, 7051 0, 65337 0, 42398

TABLE 4.10 – Comparaison de la déflection statique entre les différents modèles pour
une plaque composite [0/30/0] pour différents élancements.
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FIGURE 4.5 – Contraintes de cisaillement transverse aux points A et B pour une plaque
composite [0/30/0] avec a/h = 4 pour les trois méthodes implémentées.

a/h = 2 4 10 100

Modèle ω Erreur ω Erreur ω Erreur ω Erreur
FSDT 4, 4845 1, 77% 7, 8142 4, 24% 12, 4939 1, 46% 15, 3647 0, 05%
HSDT 4, 4994 2, 11% 7, 5603 0, 86% 12, 3699 0, 61% 15, 3579 0, 01%

Woodcock 4, 6683 5, 94% 7, 8819 5, 15% 12, 6245 2, 68% 15, 3629 0, 04%
EHOPT 4, 5753 3, 83% 7, 5351 0, 52% 12, 2989 0, 03% 15, 3563 0, 00%
3D WF 4, 4068 0, 01% 7, 4847 0, 15% 12, 2872 0, 06% 15, 3561 0, 00%
Iterative ne converge pas 4, 4840 0, 16% 12, 2871 0, 06% 15, 3561 0, 00%

Solution analytique 4, 4064 7, 4961 12, 5950 15, 3562

TABLE 4.11 – Comparaison de la première fréquence de résonance entre les différents
modèles pour une plaque composite [0/30/0] avec différents élancements.

Pour ce cas, les résultats des modèles issus de l’élasticité tridimensionnelle sont en adé-
quation avec la solution analytique ce qui valide le modèle pour les stratifiés avec une
séquence d’empilement n’impliquant aucune simplification dans le système (aucun terme
nul dans la matrice [K].



76

4.2/ RÉPONSE D’UNE PLAQUE PATCHÉE SOUMISE À UNE ONDE

PLANE PROGRESSIVE

Nous proposons ici, l’étude d’une plaque en aluminium recouverte d’un patch PCLD sur
40% de sa surface. La plaque est soumise à une onde plane progressive. La simulation
est réalisée à l’aide de la méthode de Rayleigh-Ritz associée au modèle de Woodcock.
Nous présentons dans un premier temps, une comparaison de la vitesse quadratique
moyenne de la plaque obtenue de trois façons différentes : avec la méthode de Rayleigh-
Ritz et le modèle de Woodcock, avec un calcul éléments finis tridimensionnel (Cast3m), et
avec un calcul éléments finis faisant intervenir une formulation de plaque de type LW (FFT
Actran). Puis, afin d’étudier le comportement du modèle vers de plus hautes fréquences,
une étude bidimensionnelle de la plaque est proposée.

Nous proposons ensuite une analyse énergétique de la plaque patchée. Nous écrivons
tout d’abord les formules permettant d’obtenir les puissances dissipées, de déformation
et cinétiques à partir des grandeurs de la structure discrétisée. Puis, nous étudions la
répartition de ces puissances dans la plaque patchée afin de pouvoir cibler l’origine de
l’effet dissipatif du patch. Enfin, nous proposons trois critères basés sur les puissances
conservées et dissipées, qui permet de quantifier l’efficacité du traitement viscocontraint.

4.2.1/ CONFIGURATION TEST ÉTUDIÉE

Dans cette section, une plaque d’aluminium rectangulaire, de dimensions as = 0, 6 m, bs =

0, 5 m, et d’épaisseur h = 1 mm, est soumise à une onde plane progressive, se déplaçant
vers la plaque, d’angles d’incidence θ = 45˚, ϕ = 45˚, et d’amplitude 1 Pa (voir figure 4.6).
La plaque est encastrée sur ses quatre côtés. L’aluminium a les propriétés suivantes :
module de Young E = 7, 24×1010 Pa, densité ρs = 2780 kg.m−3, coefficient de Poisson ν =

0, 33, et facteur de perte ηs = 0, 005. Un patch PCLD, composé de deux couches, centré,
avec les dimensions ap = 0, 3795 m, bp = 0, 3162 m, couvre 40% de la surface totale
de la plaque. La première couche est composée de matériau viscoélastique ISD 112 et
d’épaisseur de 0, 2 mm avec une densité de 1015 kg.m−3 et un coefficient de Poisson de
0, 45. Le tableau 4.12 présente la dépendance fréquentielle des propriétés du matériau
viscoélastique à une température donnée. À des fins de programmation, une interpolation
est utilisée et les formules employées sont présentées dans les équations (4.3) et (4.4). La
couche de contrainte a une épaisseur de 0, 2 mm et est constituée du même aluminium
que celui de la plaque.

E( f ) = 10(0,4884 log( f )+5,3848) (4.3)

η( f ) = 10(0,0175 log( f )3+0,0571 log( f )2+0,0015 log( f )−0,0874) (4.4)

Étant donné la grande disparité des modules de Young entre les couches et le fort élan-
cement de la plaque étudiée, le modèle de Woodcock a été choisi. Ce modèle a pour
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FIGURE 4.6 – Vue de la plaque patchée soumise à une onde plane progressive d’angles
d’incidence θ et ϕ.

Frequency (Hz) Young’s Modulus (Pa) Loss factor
10 7, 28 × 105 0,90
100 2, 34 × 106 1,00
500 5, 20 × 106 1,00

1000 7, 28 × 106 0,90
2000 9, 88 × 106 0,80
3000 1, 17 × 107 0,75
4000 1, 38 × 107 0,70

TABLE 4.12 – Variation des propriétés du matériau viscoélastique ISD 112 en fonction de
la fréquence (T=25˚C).

avantage d’être relativement efficace sur ce type de configurations et de ne pas nécessi-
ter de calculs préalables comme pour les méthodes présentées dans la section 2.7.5.

4.2.2/ COMPARAISON AVEC DEUX MODÈLES ÉLÉMENTS FINIS TRIDIMENSION-
NELS

Afin de vérifier la validité du modèle utilisé pour une plaque patchée, une comparaison est
réalisée avec deux types de simulations par éléments finis. Les deux modèles éléments
finis associés sont de type tridimensionnels : la plaque, la couche viscoélastique et la
couche de contrainte sont toutes les trois discrétisées avec un élément par couche au
travers de l’épaisseur.

Ces deux modèles utilisent le même élément hexaèdre à 20 nœuds, toutefois l’élément
choisi dans le code ACTRAN implémente une formulation de plaque de type LW réduisant
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ainsi le degré d’interpolation sur l’épaisseur de la plaque et permettant ainsi de réduire la
taille du système. L’élément choisi dans le code Cast3m utilise uniquement les équations
de l’élasticité tridimensionnelle et donc n’implique pas d’hypothèses cinématiques. Afin
d’éviter des temps de calcul trop longs, la taille des maillages est fixée à 59× 49× 1 + 37×
31 × 2 (91104 DDL) pour le modèle Cast3m et à 40 × 33 × 1 + 25 × 21 × 2 (42264 DDL)
pour le modèle Actran. Pour chaque modèle, il existe une fréquence au delà de laquelle
une solution correcte ne peut plus être obtenue sans augmenter la taille du problème.
Les calculs ne sont pas effectués au delà de ces fréquences.

4.2.2.1/ PRÉSENTATION DES RÉSULTATS

La figure 4.7 montre l’évolution de la vitesse quadratique moyenne
〈〈

V2
〉〉

en fonction du
nombre de degrés de liberté (DDL) pour les deux fréquences de 400 et 3000 Hz. Pour
la simulation à 400 Hz de la figure 4.7(a), il est montré que la convergence est achevée
avec dix fois moins de DDL pour la formulation Layer-Wise (LW) implémentée sous Actran
que pour la formulation tridimensionnelle. Le modèle bi-dimensionnel étudié est capable
de donner les mêmes résultats avec deux fois moins de DDL que pour la formulation
LW. Pour le cas à la fréquence 3000 Hz présenté à la figure 4.7(b), la même tendance
est observée, mais la convergence avec la formulation tridimensionnelle n’a pas pu être
achevée avec notre ordinateur pour cause de limitation de mémoire.

La figure 4.8 présente l’évolution de la vitesse quadratique moyenne
〈〈

V2
〉〉

en fonction
de la fréquence pour les trois modèles. Les calculs ont été arrêtés pour chaque code
lorsque les temps de calculs commençaient à être prohibitifs.

4.2.3/ COMPARAISON À PLUS HAUTE FRÉQUENCE AVEC UN MODÈLE ÉLÉMENT

FINIS BI-DIMENSIONNEL

Afin de permettre une comparaison à plus haute fréquence, la taille du système doit être
augmentée. Ceci ne peut être fait facilement pour les deux approches tridimensionnelles
utilisées précédemment. Le modèle bi-dimensionnel présenté ici permet des simulations
à de plus hautes fréquences.

4.2.3.1/ PRÉSENTATION DES MODÈLES DE POUTRE

Afin de permettre une validation du modèle à de plus hautes fréquences, un modèle
poutre utilisant le même champ de déplacement a été réalisé en fixant l’ordre maxi-
mum de la base à zéro dans la direction y (permettant ainsi seulement un déplace-
ment constant). Ensuite, une comparaison de ce modèle est réalisée avec un modèle
de poutre, éléments finis, bi-dimensionnel, implémenté avec Cast3m (l’hypothèse de dé-
formation plane a été appliquée).
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FIGURE 4.7 – Étude de convergence pour les trois modèles : évolution de la vitesse
quadratique moyenne

〈〈
V2

〉〉
à la fréquence de 400 Hz (a) et 3000 Hz (b) en fonction du

nombre de degrés de liberté.

Pour chaque modèle, le même cas test est simulé : une poutre de longueur a = 0, 6 m
et d’épaisseur h = 1 mm est excitée avec une onde plane acoustique d’angle d’incidence
θ = 45˚ et d’amplitude 1 Pa. La poutre est couverte avec un patch PCLD centré, composé
de deux couches avec pour dimension ap = 0, 3795 m et les mêmes caractéristiques que
dans les études précédentes.

L’ordre maximum de la base est de 100 dans la direction x ; cette valeur est obtenue avec
une étude de convergence à 10 kHz. Le maillage du modèle éléments finis est choisi
après une étude de convergence et est composé de 3000 × 10 éléments pour la plaque
de base et 1898 × 2 éléments pour le patch (pour le patch, il y a un élément par couche
pour la direction z).

4.2.3.2/ COMPARAISON DES RÉSULTATS

La simulation est réalisée sur la bande de fréquence 10−10000 Hz. La figure 4.9 présente
l’évolution de la vitesse quadratique moyenne

〈〈
V2

〉〉
en fonction de la fréquence pour les

deux modèles. Ceci montre que le modèle étudié est en accord avec le modèle éléments
finis jusqu’à 5 kHz. Les résultats sur la bande de fréquence 5 kHz−10 kHz sont similaires.
Il est intéressant de remarquer que le modèle éléments finis bi-dimensionnel prend en
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compte la déformation suivant l’axe z (εzz peut être différent de zéro).
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FIGURE 4.9 – Vitesse quadratique moyenne
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pour le modèle de poutre : comparai-
son du modèle étudié à un modèle élément fini bi-dimensionnel en déformation plane.

4.2.4/ DISCUSSION

Dans cette section, il est montré que la méthode des éléments finis avec une formulation
tridimensionnelle de l’élasticité n’est pas adaptée à l’étude des patches PCLD. Ceci né-
cessiterait un maillage très fin et donc générerait de trop grands systèmes d’équations.
Le modèle éléments finis tridimensionnel, avec une formulation LW, donne de meilleurs
résultats. Ces deux approches ont été implémentées dans le but d’avoir une solution de
référence, et il est montré que ces résultats s’accordent très bien tant qu’une convergence
est possible.
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Le modèle étudié, qui est aussi un modèle de plaque multi-couche, donne des résultats
satisfaisants comparé aux modèles de plaque tridimensionnels tout en conservant les
bonnes performances de calcul des modèles bi-dimensionnels. Ceci montre donc que les
hypothèses du modèle de Woodcock sur les champs de déplacements et de contraintes
du modèle étudié sont adaptées à l’étude des patchs PCLD.

4.2.5/ ANALYSE ÉNERGÉTIQUE DE LA PLAQUE PATCHÉE

Ce chapitre s’intéresse aux différents indicateurs énergétiques utiles à la compréhension
du phénomène d’amortissement vibratoire d’une plaque patchée. L’énergie vibratoire ré-
partie dans une plaque peut être divisée en deux partie, l’énergie dissipée ed(t) et l’éner-
gie conservée ec(t). Cette dernière est également composée de l’énergie potentielle de
déformation es(t) et de l’énergie cinétique ek(t).

4.2.5.1/ PRÉLIMINAIRES THÉORIQUES

Les déplacements sont supposés petits. Les matériaux utilisés sont viscoélastiques avec
un amortissement hystéretique. Ils sont supposés obéir à la généralisation anisotropique
du modèle de Kelvin-Voigt,

σi j = σel
i j + σvi

i j = Ci jklεkl + ηi jklε̇kl

avec Ci jkl = Ci jlk = Ckli j et ηi jkl = ηi jlk = ηkli j (4.5)

où le symbole ε̇kl marque la dérivée temporelle de εkl. Le tenseur du second ordre des
contraintes de Cauchy σ est la somme de deux tenseurs du second ordre symétriques
σel et σvi, qui représentent respectivement les contributions élastiques et visqueuses des
contraintes.

Pour des raisons physiques, lorsque l’on traite les structures amorties, il peut être inté-
ressant d’accéder aux répartitions spatiales des densités de l’énergie cinétique ek(t), de
l’énergie de déformation es(t), et de la puissance dissipée pd(t). Définissons ces quantités
en fonction du temps :

ek(t) =
1
2
ρvi(t)vi(t) es(t) =

1
2
σel

i j(t)εi j(t) =
1
2

Ci jklεkl(t)εi j(t) (4.6)

pd(t) = σvi
i j(t)ε̇i j(t) = ηi jklε̇kl(t)ε̇i j(t)

avec vi la vitesse associée au déplacement ui. Comme les structures amorties sont sou-
vent modélisées en utilisant les nombres complexes, il est intéressant d’utiliser les puis-
sances complexes, qui, comme il sera expliqué par la suite, donnent les moyennes tem-
porelles, identifiées par le symbole 〈•〉, des quantités décrites précédemment. De plus, il
est possible d’écrire l’équilibre des énergies au niveau local et global en incluant la puis-
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sance complexe incidente P̃inc et les moyennes temporelles de la puissance dissipée, de
l’énergie cinétique, et de l’énergie de déformation.

Sous forme complexe, la loi comportement des matériaux (4.5) en régime harmonique
devient :

σ̃i j = Ci jklε̃kl + jωηi jklε̃kl (4.7)

La moyenne temporelle des quantités quadratiques des formules (4.6) peut être construite
en prenant la moitié de la partie réelle du produit hermitien correspondant :

〈ek(t)〉 =
1
4
ρṽ∗i ṽi 〈es(t)〉 =

1
4

Re(σ̃el∗
i j ε̃i j) 〈pd(t)〉 =

1
2

Re(jωσ̃vi∗
i j ε̃i j) (4.8)

Le symbole Re peut être omis pour l’énergie cinétique car ce terme est réel. La symétrie
majeure du tenseur du quatrième ordre dans la loi de comportement ci-dessus implique
que σ̃el∗

i j ε̃i j est réel et que σ̃vi∗ε̃i j est imaginaire. Puis, le symbole Re restant dans l’équa-
tion (4.8) peut aussi être omis. En effet :

〈ek(t)〉 =
1
4
ρṽ∗i ṽi 〈es(t)〉 =

1
4
σ̃el∗

i j ε̃i j 〈pd(t)〉 =
1
2

jωσ̃vi∗
i j ε̃i j (4.9)

Il peut être intéressant de remarquer que :

1
2
σ̃∗i jε̃i j =

1
2

(σ̃el∗
i j ε̃i j + σ̃vi∗

i j ε̃i j) = 2 〈es(t)〉 − j
1
ω
〈pd(t)〉 (4.10)

4.2.5.2/ ÉQUILIBRE LOCAL DES PUISSANCES COMPLEXES

Nous montrons ici qu’il est possible de formuler une équation d’équilibre des puissances
complexes locales, valide en tout point de la structure. On remarque par ailleurs, que si
l’équation est valide en tout point, elle est par conséquent valide pour le domaine entier.
Par opposition, une équation d’équilibre des puissances complexes globale n’implique
pas que cette équation soit vérifiée localement. L’équation locale apporte donc une in-
formation supplémentaire sur l’équilibre des puissances. Commençons par les équations
d’équilibre de la mécanique :

σ ji, j + ρ f v
i = ρv̇i (4.11)

avec v̇i l’accélération associée à vi. Pour le problème harmonique correspondant, l’utili-
sation des quantités complexes permet d’écrire :

σ̃ ji, j + ρ f̃ v
i = jωρṽi (4.12)
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L’équation d’équilibre des puissances complexes est alors obtenue en multipliant la moitié
du produit hermitien de l’équation (4.12) par {ṽi}, ce qui donne :

1
2

ṽ∗i σ̃ ji, j +
1
2
ρṽ∗i f̃ v

i = j
1
2
ωρṽ∗i ṽi (4.13)

En faisant une intégration par partie sur le premier terme, nous pouvons écrire :

−
1
2

ṽ∗i, jσ̃ ji +
1
2

(ṽ∗i σ̃ ji), j +
1
2
ρṽ∗i f̃ v

i = j
1
2
ωρṽ∗i ṽi (4.14)

D’après la symétrie du tenseur des contraintes, il est possible d’écrire :

−
1
2

D̃∗i jσ̃ ji + (
1
2

ṽ∗i σ̃ ji), j +
1
2
ρṽ∗i f̃ v

i = jω
1
2
ρṽ∗i ṽi (4.15)

où Di j est le tenseur des vitesses de déformation. Lorsque les déformations sont petites,
on écrit Di j = ε̇i j, ce qui implique que D̃i j = jωε̃i j pour une excitation harmonique. En
introduisant Ĩ j = 1

2 ṽ∗i σ̃ ji comme le flux d’énergie (aussi connu sous le nom de vecteur
d’intensité), on écrit :

Ĩ j, j +
1
2
ρṽ∗i f̃ v

i = jω
1
2
ρṽ∗i ṽi + j

1
2
ωε̃∗i jσ̃ ji (4.16)

Le remplacement des termes de la partie droite de l’équation avec l’aide de l’équation (4.9)

et (4.10) permet d’écrire l’équation locale d’équilibre des puissances :

Ĩ j, j +
1
2
ρṽ∗i f̃ v

i = 〈pd(t)〉 + 2 jω(〈ek(t)〉 − 〈es(t)〉) (4.17)

Équations discrètes correspondantes

L’équation discrétisée (4.18) avec une formulation en déplacements (e.g., en utilisant la
méthode des éléments finis ou la méthode de Rayleigh-Ritz) est un système d’équations
linéaires écrit avec une matrice de masse [M], une matrice de rigidité complexe

[
K̃

]
, un

vecteur de force
{
f̃
}

et le vecteur des déplacements {ũ} qui est ici l’inconnue.([
K̃

]
− ω2 [M]

)
{ũ} =

{
f̃
}

(4.18)

Classiquement, le vecteur
{
f̃
}

est la somme des vecteurs des forces de volume
{
f̃ v

}
et de

surface
{
f̃ s

}
. Les quantités de l’équation (4.18) peuvent ensuite être exprimées en fonction
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des quantités du système discrétisé :

P̃ f s =

∮
S

1
2

ṽ∗i f̃ s
i dS = −

1
2

jω
{
ũ∗T

} {
f̃
}s

(4.19)

P̃ f v =

∫
V

1
2

ṽ∗i f̃ v
i dV = −

1
2

jω
{
ũ∗T

} {
f̃
}v

(4.20)

〈Ek(t)〉 =

∫
V

1
4
ρṽ∗i ṽidV =

1
4
ω2

{
ũ∗T

}
[M] {ũ} (4.21)

〈Es(t)〉 =

∫
V

1
4

Re(σ̃∗i jε̃i j)dV =
1
4

{
ũ∗T

} [
Re(K̃)

]
{ũ} (4.22)

〈Pd(t)〉 =

∫
V

1
4

Re(jωσ̃∗i jε̃i j)dV =
1
2
ω

{
ũ∗T

} [
Im(K̃)

]
{ũ} (4.23)

4.2.5.3/ ÉQUILIBRE GLOBAL DES PUISSANCES COMPLEXES

Les puissances 〈Pd(t)〉, 2ω 〈Ek(t)〉, et 2ω 〈Es(t)〉 données par les trois codes sont présen-
tées en fonction de la fréquence dans la figure 4.10. Il est alors possible de conclure que
chacun des codes de calcul utilisés donne le même résultat malgré le fait qu’ils soient
basés sur des méthodes très différentes.
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FIGURE 4.10 – Puissances 〈Pd(t)〉, 2ω 〈Ek(t)〉, and 2ω 〈Es(t)〉 pour les trois modèles diffé-
rents : Rayleigh-Ritz, le modèle Actran LW éléments finis et le code de calcul éléments
finis tridimensionnel Cast3m.

Afin de vérifier l’équilibre global des puissances de l’équation (4.18), les énergies et les
puissances globales sont calculées avec les vecteurs et matrices correspondants au
moyen de la formule de la section 4.2.5.2. Puis, nous séparons les parties réelles et
imaginaires de l’équilibre des puissances, ce qui donne le système : Re(P̃ f s + P̃ f v) = 〈Pd(t)〉

Im(P̃ f s + P̃ f v) = 2ω(〈Ek(t)〉 − 〈Es(t)〉)
(4.24)

Ces formules ont été testées pour le modèle étudié sur la bande de fré-
quence 5 − 1200 Hz. L’erreur relative ε̃ de l’équilibre des puissances a une valeur maxi-
mum réelle et imaginaire de Re(ε) = 1, 102 × 10−8 et Im(ε) = 1, 206 × 10−13 sur la bande de
fréquence simulée. Ceci confirme la formule de la section 4.2.5.2 et montre que l’équilibre
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des puissances complexes est vérifié.

4.2.5.4/ CONTRIBUTION DES COMPOSANTES DU TENSEUR AUX PUISSANCES

Il est possible de distinguer à l’intérieur de chaque couche la contribution de chaque
mode de déformation. Les contributions à l’énergie de déformation,
– des composants 11, 22, et 12 du tenseur des contraintes et déformations (dans le

plan),
– des déformations de cisaillement transverse autour de l’axe xz (composant 13),
– et des déformations de cisaillement transverse autour de l’axe yz (composant 23),

peuvent être calculées séparément.

Le tableau 4.13 montre ces contributions pour la structure étudiée, lorsque celle-ci est
excitée par une onde plane acoustique à la frequence 80 Hz. Ce tableau présente :
– la puissance dissipée 〈Pd(t)〉
– la puissance équivalente de déformation 1 2ω 〈Es(t)〉.

Pour la structure étudiée, 80 Hz correspond à une basse fréquence non modale. Une
comparaison avec les résultats du modèle éléments finis tridimensionnel montre un bon
accord entre les résultats.

Rayleigh-Ritz Cast3m 3D Rayleigh-Ritz Cast3m 3D

Composantes 〈Pd(t)〉 (W) Part 〈Pd(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part

11 22 12 (33) 3, 118 × 10−7 5, 4% 3, 107 × 10−7 5, 7% 6, 230 × 10−5 92, 0% 6, 203 × 10−5 92, 2%
13 3, 209 × 10−6 56, 0% 2, 999 × 10−6 54, 7% 3, 202 × 10−6 4, 7% 3, 024 × 10−6 4, 5%
23 2, 206 × 10−6 38, 5% 2, 178 × 10−6 39, 7% 2, 200 × 10−6 3, 2% 2, 190 × 10−6 3, 3%

Total 5, 726 × 10−6 5, 488 × 10−6 6, 770 × 10−5 6, 724 × 10−5

Couche 〈Pd(t)〉 (W) Part 〈Pd(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part

Plaque 2, 477 × 10−7 4, 3% 2, 585 × 10−7 4, 7% 4, 953 × 10−5 73, 2% 5, 171 × 10−5 76, 9%
Couche viscoélastique 5, 415 × 10−6 94, 6% 5, 177 × 10−6 94, 3% 5, 395 × 10−6 8% 5, 158 × 10−6 7, 7%
Couche de contrainte 6, 385 × 10−8 1, 1% 5, 189 × 10−8 1, 0% 1, 275 × 10−5 18, 9% 1, 038 × 10−5 15, 4%

Total 5, 727 × 10−6 5, 488 × 10−6 6, 767 × 10−5 6, 724 × 10−5

TABLE 4.13 – Répartition des puissances conservées et dissipées sur les différentes di-
rections de l’espace obtenue avec la méthode de Rayleigh-Ritz et la formulation éléments
finis tridimensionnelle à 80 Hz.

Ces résultats montrent clairement l’importance du rôle des déformations dues au cisaille-
ment transverse dans la couche de matériau viscoélastique pour l’amortissement. On
peut aussi remarquer l’importance de la déformation dans le plan des couches élas-
tiques pour l’énergie de déformation. Bien sur, ceci est dû à la position de chaque couche
dans la structure et aux modules de Young relatifs aux matériaux. La localisation de la
déformation due au cisaillement transverse dans la couche de matériau viscoélastique et
dans les couches rigides supérieures et inférieures n’est pas surprenante puisque cette

1. la puissance développée sur un cycle par les forces internes élastiques est nulle
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observation est connue pour les structures sandwich. Ce qui est plus surprenant est la
forte contribution de la couche viscoélastique à l’amortissement. En effet, on peut remar-
quer que le module de Young du matériau viscoélastique est (à cette fréquence) 35000
fois plus faible que le module de Young de l’aluminium. Avec un facteur de perte de 0, 005
pour l’aluminium et 1, 0 pour le matériau viscoélastique, la couche de matériau viscoélas-
tique est responsable de 94,6% de la puissance dissipée sur toute la structure, tandis
qu’elle occupe seulement 6,9% du volume total de la structure, 2,6% de la masse et re-
couvre 40% de la surface. Ceci s’explique en effet de part l’amplitude des déformations au
sein de la couche de matériau viscoélastique. En effet, le gradient de déformation moyen
de la couche viscoélastique est largement supérieur à celui des couches métalliques.

On remarque que les contributions des composantes 13 et 23 sont majoritairement gou-
vernées par la déformée, elles varient donc avec la fréquence ou l’excitation, mais leur
somme est à peu près constante lorsque l’on fait varier la fréquence. Il est aussi intéres-
sant de remarquer que la contribution mineure de la composante 33 a été ajoutée à la
contribution de l’énergie “dans le plan” pour le modèle tridimensionnel.

En comparant le modèle étudié, qui peut être classé comme un modèle zig-zag équi-
valent monocouche (d’après la classification donnée dans [Carrera2004 ]), avec le mo-
dèle éléments finis tridimensionnel, on remarque que celui-ci est capable de déterminer
précisément les contributions de chaque couche et chaque mode de déformation des
puissances conservées ou dissipées.

4.2.5.5/ DISTRIBUTION DE LA PUISSANCE SUR LA SURFACE DE LA PLAQUE

Il est possible d’obtenir les déformations à partir du champ de déplacement décrit
dans [Sun1973 ] et ensuite de calculer les valeurs locales de ε̃(x, y, z) et σ̃(x, y, z). L’in-
tégration de la formule (4.10) sur z et la multiplication par (jω) donne :

1
2

∫ h

0
σ̃∗i j(x, y, z) jωε̃i j(x, y, z)dz =

∫ h

0
〈pd(x, y, z, t)〉dz + 2 jω

∫ h

0
〈es(x, y, z, t)〉dz (4.25)

ce qui permet définir les densités de puissances surfaciques associées p̃s(x, y),〈
p̃s

d(x, y, t)
〉
, et 2ω

〈
ẽs

s(x, y, t)
〉

:

p̃s(x, y) =
〈
ps

d(x, y, t)
〉

+ 2 jω
〈
es

s(x, y, t)
〉

(4.26)

Pour le système décrit dans la section4.2.1, la vitesse quadratique
〈
u̇2

3(t)
〉

= 1/2 ω2ũ∗3ũ3,
les deux puissances

〈
ps

d(x, y, t)
〉

et 2ω
〈
es

s(x, y, t)
〉

sont cartographiées pour les deux fré-
quences 80 Hz et 850 Hz et sont présentées dans les figures 4.11 et 4.12. La fréquence
850 Hz a été choisie pour explorer la bande des moyennes fréquences et parce que
le patch semble avoir une faible efficacité d’après les critères présentés dans la sec-
tion 4.2.5.6.
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FIGURE 4.11 – Cartographies pour la fréquence de 80 Hz.

En comparant les figures 4.11(a) et 4.11(c), il est possible de remarquer un lien direct
avec la vitesse quadratique et la localisation de l’énergie de déformation. La figure 4.11(b)
montre que la localisation de la puissance dissipée est différente de celle de l’énergie de
déformation.
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FIGURE 4.12 – Cartographies pour la fréquence de 850 Hz.

À la fréquence plus élevée de 850 Hz, il est possible de conclure à partir de la figure 4.12
que la puissance associée avec l’énergie de déformation 2ω

〈
es

s(t)
〉

tend à être stockée à
l’extérieur de la surface patchée ; à l’inverse, la puissance dissipée

〈
ps

d(t)
〉

tend à être plus
faible qu’à la fréquence de 80 Hz. Il est possible de considérer que le patch n’est pas très
efficace à cette fréquence ; il est donc intéressant de calculer les ratios présentés dans
la section 4.2.5.6.

Il est aussi possible de voir une asymétrie, en particulier pour le deuxième cas avec une
fréquence d’excitation de 850 Hz. Ceci est dû à l’angle d’incidence de l’onde plane acous-
tique incidente. Les niveaux d’énergie sont plus hauts dans le coin opposé à la prove-
nance de l’onde acoustique. Ceci peut s’expliquer par le fait que l’onde plane acoustique
incidente créé une onde plane progressive dans la plaque, avec une longueur d’onde cor-
respondant à la projection de la longueur d’onde de l’onde plane incidente. Cette onde
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plane progresse dans la même direction que la projection de l’onde plane incidente et
apporte de l’énergie au coin opposé. Cette énergie rebondit sur les bords de la plaque,
mais l’amortissement réduit la quantité d’énergie réfléchie, ce qui explique l’asymétrie
observée. Ce phénomène a été observé pour plusieurs angles d’incidence et plusieurs
fréquences, et il est plus facile de le voir sur une animation. Quoi qu’il en soit, le rôle
présumé de ce phénomène sur l’amortissement n’a pas été étudié à ce jour.

Cet outil, permettant de visualiser la distribution de l’énergie sur la plaque, apporte un
nouvel aspect au problème de la disposition optimum des patchs. Cette méthode déter-
ministe permet aussi une meilleure compréhension de la façon dont le patch amorti les
vibrations.

4.2.5.6/ INDICATEURS D’EFFICACITÉ

Comme première introduction de l’utilisation des puissances et des énergies dans les
systèmes amortis, cette section propose une investigation des critères d’efficacité des
patchs d’un point de vue énergétique. Un critère usuel de la transmission du son au tra-
vers d’une plaque communément rencontré dans la littérature est la transparence acous-
tique (Transmission Loss – TL), qui est définit comme le ratio entre la puissance acous-
tique incidente et la puissance acoustique transmise. Cependant, ce ratio n’indique pas
directement l’efficacité du patch d’un point de vue strictement mécanique. En effet, la
transparence acoustique est un indicateur global des vibrations de la plaque, qui inclue
l’efficacité de rayonnement des modes et d’autres paramètres acoustiques. Les indica-
teurs présentés ici, η1, η2 et η3 sont uniquement basés sur l’efficacité du patch :

η1 =
〈Pd(t)〉

2ω 〈Ek(t)〉

η2 =
〈Pd(t)〉

2ω 〈Es(t)〉
(4.27)

η3 =
〈Pd(t)〉

2ω(〈Ek(t)〉 + 〈Es(t)〉)

Ces indicateurs peuvent éventuellement être utilisés pour obtenir des fonctions objectif
utilisées lors de l’implémentation d’algorithmes d’optimisation.

L’indicateur η1 est adapté à l’optimisation du patch avec comme objectif l’efficacité acous-
tique ; l’énergie cinétique de la structure est considérée comme directement liée aux
émissions acoustiques de la structure. L’indicateur η2 est adapté à l’optimisation méca-
nique du patch. En effet, si l’on minimise l’énergie de déformation, cela tend à réduire le
niveau de vibration de la structure. L’indicateur η3, quant à lui, est un indicateur hybride
combinant les indicateurs η1 et η2.

On remarque que l’indicateur η2 est similaire à l’indicateur η présenté par Johnson et
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Kienholz [Johnson1982 ]. La principale différence est que η2 prend en compte l’énergie
dissipée totale tandis que η prend uniquement en compte l’énergie dissipée par la couche
viscoélastique.
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FIGURE 4.13 – Ratios η1, η2, et η3 sur la bande de fréquence 5Hz–3000Hz.

Si on analyse la tendance générale des trois courbes de la figure 4.13, nous pouvons
voir que les trois indicateurs tendent à diminuer lorsque la fréquence augmente. Ceci
peut s’expliquer avec la logique suivante :
– Dans les basses fréquences, la déformée de la structure patchée est proche de celle

de la structure nue, et seule l’amplitude des déformations de la plaque est affectée par
le patch.

– Dans les plus hautes fréquences, la vitesse quadratique moyenne sur la surface du
patch est plus faible que sur le reste de la plaque. La surface du patch se comporte
alors quasiment comme si elle était rigide, et le reste de la plaque comme si elle n’était
pas traitée.

En conclusion, il est donc possible de choisir un de ces nouveaux critères d’optimisation
en fonction du but recherché pour le patch amortissant (i.e., limiter l’énergie cinétique
et/ou l’énergie de déformation). Essayer de maximiser un des critères proposés à l’aide
d’un algorithme d’optimisation devrait minimiser le stockage d’énergie cinétique et de
déformation autour du patch comme observé sur les cartographies présentées à 850 Hz.

4.3/ ANALYSE INVERSE DES PARAMÈTRES MATÉRIAUX D’UNE

PLAQUE EN VIBRATION

Nous présentons ici une méthode inverse permettant d’identifier les paramètres maté-
riaux d’une plaque patchée. Nous avons choisi de travailler sur une poutre. La méthode
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tente de faire correspondre la vitesse quadratique moyenne simulée à la vitesse quadra-
tique moyenne mesurée expérimentalement à l’aide d’un algorithme d’optimisation. Dans
notre cas, nous tentons d’identifier le module de Young et le facteur de perte du matériau
viscoélastique. L’optimisation est réalisée à l’aide d’une combinaison d’un algorithme de
tirage appelé Latin Hypercube Sampling (LHS) et d’un Algorithme Génétique (GA).

Le premier algorithme est un tirage aléatoire développé par McKay [McKay ] comme une
alternative à un tirage purement aléatoire. Cet algorithme considère un hypercube qui est
l’espace de travail dans lequel des échantillons sont tirés et proposés pour l’optimisation.
Le principal avantage de cet algorithme est de garantir une meilleure utilisation de tout
l’espace de travail pour chaque variable et de limiter le nombre d’échantillons proposés.

Les GA sont des méthodes d’optimisation stochastiques basées sur l’évolution
naturelle et les théories génétiques. Ces algorithmes sont classiquement utili-
sés dans les méthodes d’identification comme par exemple dans les travaux de
Hwang [hwang_determination_2000 ] et Cunha [cunha1999 ] où sont combinés ré-
sultats expérimentaux et solutions numériques afin de minimiser les différences pour des
systèmes non amortis.

4.3.1/ MÉTHODE UTILISÉE

Pour l’algorithme proposé, nous parlerons d’échantillon pour chaque jeu de paramètres et
de génération pour chaque groupe d’échantillons simulés et comparés entre eux. Le LHS
propose dans un premier temps une génération initiale d’échantillons. Chaque échan-
tillon donne lieu à une simulation avec le modèle générique (warping functions de Sun &
Whitney) pour obtenir la réponse à une excitation donnée sur une bande de fréquence.
Un indicateur est choisi (dans notre cas la vitesse quadratique moyenne). Puis, les ré-
sultats obtenus sont comparés à la mesure expérimentale et classés en fonction d’un
critère choisi. Enfin l’algorithme génétique propose une nouvelle génération en réalisant
un croisement des données sur le plan binaire des meilleurs échantillons de la généra-
tion précédente. Le diagramme présenté dans la figure 4.14 montre l’algorithme dans
son ensemble, les paragraphes suivants présentent les détails de l’algorithme utilisé.
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FIGURE 4.14 – Diagramme de l’algorithme utilisé

Génération initiale et selection

Une génération initiale de taille ns est proposée par la méthode LHS. Dans le but de
définir un espace de travail pour l’hypercube de l’algorithme LHS, un domaine de variation
pour chaque paramètre des matériaux est proposé. Pour notre étude, ces limites sont
choisies à ±x% de la valeur probable de chaque variable. La réponse, en terme de vitesse
quadratique moyenne, est calculée pour chaque échantillon.

On dispose de deux courbes de vitesse quadratique moyenne, celle qui correspond à
l’échantillon simulé, et la courbe expérimentale. On calcule la corrélation entre les deux
courbes (premier critère) et l’aire entre les courbes (deuxième critère). Ces deux cri-
tères sont calculées pour chaque échantillon afin de choisir les np meilleurs échantillons
en utilisant le critère de sélection approprié. Pour la première itération, les échantillons
sont choisis avec le critère de corrélation. Les étapes suivantes proposent de nouveaux
échantillons en tentant d’améliorer la valeur des critères.
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Évolution

La solution est recherchée en utilisant un GA avec un encodage binaire. Les np meilleurs
échantillons, appelés parents, sont croisés au moyen d’une opération de croisement GA
produisant ainsi nc nouveaux échantillons, que nous appellerons enfants.

Après plusieurs itérations, les échantillons de chaque génération peuvent tendre à être
tous identiques puisque la méthode ne recombine que d’anciennes informations pour en
créer de nouvelles. Afin de parer à cela, deux stratégies ont été mises en place :
– Pour chaque génération, la méthode LHS propose ns2 nouveaux échantillons
– Lorsque deux échantillons sont quasiment identiques, l’un des deux est alors supprimé

et remplacé par un nouvel échantillon proposé par la méthode LHS.

Chaque nouvelle génération est alors constituée de l’union de np, nc et ns2 échan-
tillons. Une nouvelle simulation est faite pour cette génération, les vitesses quadratiques
moyennes obtenues sont comparées aux données expérimentales. Il est important de
noter que le nombre d’échantillons de chaque génération reste contant.

Le choix du meilleur échantillon est effectué par un double critère. Les critères sont alter-
nés pour chaque génération. Ceux-ci sont définis ainsi :
– Générations impaires : le critère de corrélation est utilisé

rxy =
Ŝ xy

Ŝ xŜ y
(4.28)

où Ŝ xy désigne la covariance entre les vitesses quadratiques expérimentales et simu-
lées, et Ŝ x Ŝ y leur écart type. Ce critère tend donc vers 1 lorsque les courbes de vitesse
quadratique expérimentales et simulées sont corrélées linéairement.

– Générations paires : le critère de l’aire entre les deux courbes est utilisé

A =
1

ω2 − ω1

∫ ω2

ω1

∣∣∣VQexp(ω) − VQsim(ω)
∣∣∣ dω (4.29)

Les deux courbes sont alors parfaitement superposées lorsque A = 0.

La dualité des critères de sélection améliore la performance du processus. Pour les gé-
nérations impaires, le critère de corrélation permet de "localiser les pics" tandis que le
critère de l’aire aide à réduire l’amplitude entre les courbes pour les générations paires.

Critère d’arrêt

Le processus itératif est arrêté lorsque le critère de corrélation et d’aire ont tout deux
acquis des valeurs stables pour plusieurs générations successives.
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4.3.2/ IDENTIFICATION DES PARAMÈTRES CARACTÉRISTIQUES D’UN MATÉRIAU

VISCOÉLASTIQUE

L’algorithme décrit ci-dessus est utilisé pour identifier les paramètres caractéristiques
d’un matériau viscoélastique. Afin d’identifier avec précision les caractéristiques de l’alu-
minium utilisé et pour avoir la meilleure précision possible, la méthode est utilisée sur
deux configurations différentes. Une poutre A non traitée composée d’aluminium, de di-
mensions 17, 7 mm × 128 mm × 0, 98 mm, avec des conditions aux limites guidée-libre,
se voit imposer une accélération constante sur le bord guidé, sur la bande de fréquence
0−400 Hz. Cette configuration permettra de déterminer avec précision les caractéristiques
de l’aluminium utilisé. Puis, dans un second temps, une poutre B totalement recouverte
d’un patch PCLD, de mêmes dimensions et avec les mêmes conditions aux limites, se voit
aussi imposer une accélération constante sur le bord guidé, sur la bande de fréquence
0 − 420 Hz. Les différentes couches de la structure sont composées de 0, 99 mm d’alumi-
nium, de 0, 5 mm de matériau viscoélastique amortissant et d’une couche de contrainte
en aluminium de 0, 2 mm. Le finalité de la mesure est d’obtenir le module de Young et le
facteur de perte du matériau viscoélastique.

Approximation des paramètres des matériaux viscoélastiques

Pour les matériaux viscoélastiques, le module de Young et le facteur de perte varient
avec la fréquence. Il est donc nécessaire d’effectuer une approximation des paramètres
en fonction de la fréquence. Pour cela, nous mesurons les caractéristiques du matériau
viscoélastique à l’aide d’un viscoanalyseur. Les résultats obtenus avec cette mesure sont
donnés dans la figure 4.15. On remarque que pour différentes températures, la même
tendance est observée, c’est pourquoi deux fonctions simples sont proposées pour re-
présenter le mieux possible les données dans une bande de fréquence limitée :

E( f ) = a f b (4.30)

η( f ) = k × 10
(
−c(ln( f /d))2

)
(4.31)

Cette approximation nécessite de fixer la constante k à la valeur de 1, 18 pour le matériau
étudié. Les coefficients a, b, c et d varient en fonction de la bande de fréquence et de la
température.
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FIGURE 4.15 – Module de Young et facteur de perte mesuré avec le viscoanalyseur

Modélisation de la poutre avec la méthode de Rayleigh-Ritz

La méthode de Rayleigh-Ritz, telle que décrite dans la section 3.1 est utilisée pour les
simulations nécessaires à l’algorithme d’identification. Sur la direction x, l’ordre maximum
de la base est de 50, et sur la direction y, seules les fonctions 1 à 5 sont utilisées. Un
vrai problème de poutre ne nécessite, en principe, que les fonctions numéro 1 et 3 afin
que les champs de déplacement soient constants dans la direction y. Cette configuration
est apparue trop restrictive et n’a pas permis d’obtenir des résultats satisfaisants. C’est
pourquoi les 5 premières fonctions ont été retenues pour la direction y.

Afin de simuler les conditions expérimentales de cette étude, sur le bord x = 0, l’accélé-
ration transverse ẅ0(0, y) = −ω2w0(0, y) est imposée. Ceci est fait en imposant l’amplitude
w0 = −

ẅ0(0,y)
ω2 sur les fonctions de la base φ1(x)φ1(y) et φ1(x)φ3(y) au moyen de multiplica-

teurs de Lagrange.

La condition aux limites guidée correspond généralement à une rotation nulle de la
section. Comme ce modèle permet à chaque couche de tourner de manière indépen-
dante, une condition plus générale est nécessaire. Toutefois, les déplacements longitu-
dinaux u1 (0, y,±h/2) sont nuls aux plans supérieurs et inférieur à cause des mors. Par
conséquent, de très petites rotations (correspondant aux déformations de cisaillement)
sont permises à cet endroit. C’est pourquoi la dérivée première de la flèche w0

,1(0, y)
et les déformations de cisaillement transverse γ0

13(0, y) sont choisies nulles. D’après le
modèle de Woodcock, cela implique que les déformations de cisaillement transverse
γ`13(0, y) de chaque couche sont nulles, et il en va de même pour les rotations associées
ϕ`1(0, y) = −w0

,1(0, y) +γ`13(0, y). D’autres conditions aux limites ont été testées mais elles se
sont révélées trop souples lorsque l’on comparait avec les résultats expérimentaux tandis
que les conditions présentées ici donnent d’excellents résultats.

Les déplacements plans u0
1(0, y) et u0

2(0, y) sur le bord x = 0 sont aussi choisis nuls en
éliminant les fonctions de la base φ1(x)φi(y). Il n’y a pas de forces imposée au système,
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seulement l’accélération mentionnée plus haut.

4.3.2.1/ MESURES EXPÉRIMENTALES

Un dispositif expérimental a été développé afin de mesurer la réponse vibratoire de la
poutre mentionnée ci-dessus. La figure 4.16 montre ce dispositif.

Vibromètre Laser

45◦

Contrôleur vibromètre

Accéléromètre

Pot vibrant d'acquisition

Chambre Climatique

Système

FIGURE 4.16 – Montage expérimental

La poutre est encastrée en son milieu par deux mors en aluminium. Afin d’éviter d’en-
dommager le matériau viscoélastique au niveau de l’encastrement, le patch est retiré
de la partie encastré et remplacé par un insert en alumium. En prenant en compte les
conditions de symétrie, seul la moitié de la poutre est analysée.

La poutre est excitée pour un déplacement harmonique imposé pour lequel l’amplitude
est choisie de façon à ce que l’accélération soit constante au niveau de l’encastrement sur
une bande de fréquence. L’excitation est réalisée à l’aide d’un pot vibrant Bruel & Kjaer
Type 4810, produisant une force sinusoïdale verticale, connecté aux mors en aluminium.
Le niveau d’accélération est mesuré par un accéléromètre PCB 352 SN C33 et sert au
contrôle du pot vibrant via un PID. La vitesse quadratique moyenne est calculée à partir
de la vitesse mesurée en 26 points différents le long de la poutre. Elle est obtenue avec
un vibromètre laser Polytec OFV–505 associé à un contrôleur Polytec OFV–5000.

Le dispositif est placé dans une chambre climatique Weiss Technik KWP 64/75 afin d’as-
surer une température constante pendant les essais. À cause des caractéristiques géo-
métriques de la chambre climatique, il est nécessaire d’utiliser un miroir afin de réfléchir
le rayon laser à 90◦.

L’acquisition est réalisée en utilisant fréquence d’échantillonnage de 1000 Hz et en pre-
nant 2000 échantillons à chaque mesure. Chaque mesure est moyennée cinq fois pour
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chaque fréquence d’excitation.

La bande de fréquence 20−420 Hz est choisie de façon à ce que les deux premiers modes
de vibration puissent être mesurés. Le niveau d’accélération de 12 m.s−2 est choisi de
façon à avoir un bon niveau de sensibilité sur la bande de fréquence.

4.3.2.2/ RÉSULTATS

L’algorithme décrit dans la section 4.3.1 est utilisé. Les valeurs des paramètres ns, np, nc

et ns2 sont données dans la table 4.14. Certains paramètres matériaux choisis comme
constants sont donnés dans la table 4.15.

ns np nc ns2

65 10 55 10

TABLE 4.14 – Valeur valeurs des paramètres ns, np, nc et ns2 pour l’application.

Aluminium Matériau viscoélastique

Densité (Kg/m3) 2700 1000

Coefficient de Poisson 0,33 0,45

TABLE 4.15 – Propriété des matériaux qui sont considérées comme constantes

Résultats pour la poutre A

Pour la poutre A, le module de Young et le facteur de perte de l’aluminium sont les para-
mètres recherchés. Le calcul est arrêté après 52 itérations puisque l’algorithme n’a pas
proposé de meilleur échantillon pour 10 générations successives. La table 4.16 montre
les paramètres des valeurs minimales et maximales données à l’algorithme LHS et les
valeurs du meilleur échantillon pour la génération 11 et la génération 52. Les bornes de
variation du module de Young de l’aluminium et du facteur de perte sont choisies à ±20%
de la valeur de référence. On remarque tout d’abord que les résultats obtenus après
convergence sont des valeurs tout à fait acceptables du module de Young et du facteur
de perte pour un aluminium. La figure 4.17 montre la vitesse quadratique moyenne as-
sociée aux résultats présentés dans le tableau ainsi que la vitesse quadratique moyenne
mesurée expérimentalement.

On remarque sur la figure 4.17 une légère erreur de mesure expérimentale aux alentours
de 185 Hz. Ceci est du à un mode de résonance du support placé sous le pot vibrant.
Nous choisissons d’ignorer cette erreur de mesure expérimentale. On peut aussi voir que
la différence des vitesses quadratiques entre la génération 11 et la génération 52 est
très faible et difficile à percevoir à l’oeil nu. Ceci peut éventuellement laisser présager
d’éventuels problèmes de sensibilité au problème considéré.
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En observant la table 4.16, on remarque que, pour le facteur de perte, l’algorithme
converge vers une valeur extérieure aux bornes données pour l’algorithme LHS. Ceci est
possible puisque le processus de croisement de l’algorithme génétique autorise des ré-
sultats en dehors de ces bornes. Cependant, cela montre qu’un choix adapté des bornes
de variation de chaque paramètre doit être fait, ceci pouvant probablement aider l’algo-
rithme à converger plus rapidement.

Génération E (MPa) Facteur de perte R Aire

Valeur de référence 70 6,700E-03

Valeur minimum 57,6 5,360E-03

Valeur maximum 86,4 8,040E-03

11 70,43 1,620E-02 9,885E-01 7,358E-02

52 70,44 8,424E-03 9,865E-01 6,529E-02

TABLE 4.16 – Résultats obtenus avec l’algorithme proposé pour deux générations diffé-
rentes.
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FIGURE 4.17 – Vitesse quadratique moyenne de la poutre nue : mesure expérimentale et
valeur calculées du meilleur échantillon pour les générations 11 et 52.

Résultats pour la poutre B

Pour la poutre B, les paramètres a et b (intervenant dans le module de Young), les pa-
ramètres c et d (pour le facteur de perte) et le paramètre h (l’épaisseur de la couche
de matériau viscoélastique) sont les paramètres recherchés. Les résultats obtenus pour
la poutre A sont utilisés dans l’algorithme pour les paramètres du matériau aluminium.
Après 76 itérations, l’algorithme ne converge toujours pas, et pour des raisons de temps
de calcul, le processus est arrêté. Pour ce cas, si on s’intéresse à l’évolution du critère de
l’aire en fonction des générations (figure 4.18), on remarque que le calcul ne converge
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pas. Nous observons deux phénomènes :
– Nous pouvons voir une oscillation de la valeur du critère pour les générations paires

ou impaires. Ceci vient du critère alternatif choisi. Ce phénomène n’empêche pas l’al-
gorithme de converger ; on pourrait en effet considérer le calcul comme convergé si les
valeurs pour toutes les générations paires et impaires étaient stables pour plusieurs
générations successives.

– Pour les générations paires, on observe une variation erratique de la valeur du critère
de l’aire. Cela vient du dynamisme apporté aux générations par le double critère. On
peut alors dire que l’algorithme ne converge pas.
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FIGURE 4.18 – Vitesse quadratique moyenne de la poutre patchée : mesure expérimen-
tale et valeur calculées du meilleur échantillons pour la génération 76.

Cependant, nous choisissons de garder les résultats de la génération 76, le critère de
l’aire étant minimum pour cette génération. Les résultats correspondants à cette généra-
tion sont donnés dans la table 4.17. Les valeurs obtenues sont plausibles bien que les
variables c et d soient en dehors de la plage de variation initiale donnée à l’algorithme
LHS. Les vitesses quadratiques moyennes du calcul et de la mesure expérimentale sont
présentées dans la figure 4.19.

Génération a b c d h R Aire

Valeur de référence 272352 0,5606 0,01 87,5 0,005

Valeur minimum 217881,6 0,44848 0,008 70 0,004

Valeur maximum 326822,4 0,67272 0,012 105 0,006

76 319060,1 0,5149 0,016 64,4 0,000457 0,99809 0,0255

TABLE 4.17 – Résultats obtenus avec l’algorithme proposé pour la génération 76.
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FIGURE 4.19 – Vitesse quadratique moyenne de la poutre : mesure expérimentale et
valeur calculées du meilleur échantillons pour la génération 76.

4.3.3/ DISCUSSION À PROPOS DE LA MÉTHODE D’IDENTIFICATION

Les résultats obtenus pour la méthode d’identification sont donc mitigés. Plusieurs ré-
sultats, relativement satisfaisants ont été obtenus. Cependant, les paramètres mesurés
pour le matériau viscoélastique ne correspondent pas à ceux mesurés à l’aide du vis-
coanalyseur. La différence des résultats n’est cependant pas significative au point de
discréditer la méthode. Les différences peuvent en effet venir d’erreur de mesures, soit,
avec le viscoanalyseur, soit sur la poutre patchée. Pour la poutre patchée, l’échauffement
du matériau viscoélastique n’est pas pris en compte, et la température est un paramètre
qui influe sur la rigidité et l’amortissement de ce matériau.

Par ailleurs, la taille des générations et le nombre de parents ont été choisis de manière
empirique après plusieurs tests. Ces choix pourraient être affinés. Il serait aussi possible
de créer un critère unique combinant les deux critères choisis ici.
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La méthode, telle que présentée ici, est donc validée pour une configuration simple, telle
qu’une poutre nue. Une étude plus approfondie sur une plus grande plage de fréquence
mériterait donc d’être faite pour l’identification des propriétés des matériaux viscoélas-
tiques.



CONCLUSIONS ET PERSPECTIVES

Ce document présente différentes solutions aux problématiques de modélisation des
structures composites intégrant des éléments amortissants. Il a pour objectif de répondre
aux besoins de modélisation des plaques composites traitées avec des dispositifs anti-
vibratoires en fournissant un modèle adapté à l’utilisation d’algorithmes d’optimisation.
Une des applications de ce savoir-faire est de permettre l’amélioration du confort vibra-
toire et acoustique des véhicules. Différents aspects de la question ont été abordés, et
de nouveaux outils ont été développés pour répondre aux problèmes posés.

Nous avons tout d’abord mis en évidence les besoins actuels en matière de simulation
en présentant un état de l’art de la modélisation des plaques et certaines technologies
d’amortissement passifs et actifs. Ce travail nous a permis de mettre en évidence plu-
sieurs points :
– les modèles de plaque classiques ne permettent pas de répondre avec satisfaction

aux besoins de modélisation des plaques faiblement élancées ou munies de dispositifs
amortissants,

– de nombreux modèles de plaque ont été proposés dans la littérature, mais leur implé-
mentation est souvent délicate et nécessite un travail long et rigoureux,

– les dispositifs amortissants, passifs ou actifs, classiquement utilisés dans l’industrie,
induisent des perturbation des champs cinématiques de la plaque,

– malgré l’augmentation des capacités de calcul des ordinateurs, le développement des
processus d’optimisation implique un besoin de modèles performants. En effet, ceux-
ci permettent de limiter la taille des systèmes à résoudre et autorisent l’utilisation de
méthodes d’optimisation itératives tels que les algorithmes génétiques. Cela justifie,
encore à l’époque actuelle, les efforts de développement de modèles de plaque "Equi-
valent Single Layer" que l’on constate dans la communauté scientifique.

Le problème a été abordé sous plusieurs aspects différents :
– Nous avons présenté un modèle de plaque générique, utilisant des warping functions.

Ce modèle permet de retrouver les modèles de plaque classiques ainsi que plusieurs
autres modèles issus de la littérature. L’originalité de cette approche réside dans la
caractéristique générique du modèle présenté. En effet, malgré la présence de formu-
lations unifiées pour les modèles de plaque, la littérature ne fait pas état d’un modèle
générique, dédié aux formulations équivalentes simple couches (appelées ESL dans
ce document), permettant l’utilisation de warping functions quelconques. La formula-
tion unifiée la plus connue, telle que présentée par Carrera [carrera_unified_2005 ],
limite les warping functions à une forme polynomiale.
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– Nous avons proposé deux nouvelles méthodes d’obtention des warping functions is-
sues de formulations tridimensionnelles. Ces deux méthodes permettent d’obtenir une
précision dans la description des contraintes de cisaillement transverses jusque-là ja-
mais atteinte pour un modèle de plaque équivalent simple couche. Les configurations
les plus difficiles à simuler avec un modèle de plaque étaient jusque là, limité par
la qualité de la description du cisaillement transverse. Ces méthodes apportent une
réponse à ces problèmes. Il faut cependant nuancer l’importance de ces méthodes,
puisque celles-ci nécessitent, soit une solution analytique à priori, soit un processus
itératif. Par ailleurs, l’utilisation de warping functions, telle qu’implémentée dans ce mo-
dèle, suppose que la répartition du cisaillement transverse ne dépend pas de x ou de
y.

– Plusieurs méthodes de discrétisation adaptées au modèle générique ont été présen-
tées. Chacune d’elles possèdent des avantages et inconvénients. On peut donc choisir
celle qui convient le mieux en fonction des besoins.
– La procédure de Navier permet de tester la qualité d’un modèle, représenté ici par un

jeu de warping functions. Cependant la méthode est limitée aux plaques composites
orthotropes rectangulaires avec des conditions aux limites simplement appuyée et
soumises à un chargement de forme bi-sinusoïdale.

– La méthode de Rayleigh-Ritz est adaptée à la simulation de plaques rectangulaires
traitées avec un ou plusieurs patchs amortissants passifs. La base proposée permet
l’implémentation de plusieurs conditions limites. Plusieurs types d’excitation peuvent
être utilisées afin d’évaluer la réponse de la plaque, qui elle-même peut être quanti-
fiée au moyen de plusieurs indicateurs, comme par exemple la vitesse quadratique
moyenne. Même si on peut adapter la méthode de Rayleigh-Ritz à des géométries
plus complexes, elle n’en reste pas moins très limitée de ce côté là, contrairement à
la méthode des éléments finis.

– La méthode des élément finis permet de simuler le comportement de structures
aux géométries plus complexes avec une grande liberté de définition des condi-
tions aux limites, des chargements, ainsi que des couplages éventuels (autres sous-
structures, autres phénomènes, etc.). Pour notre modèle, la complexité d’implémen-
tation des éléments finis adaptés au modèle est cependant un aspect limitatif de la
méthode.

Les trois méthodes permettent de réaliser des études statiques et dynamiques (ré-
ponse à un chargement dynamique et recherche de modes propres) pour différents
jeux de waping functions.

Afin de valider et juger des capacités du modèle générique, plusieurs investigations nu-
mériques ont été menées.

La procédure de Navier a notamment permis de valider le modèle en comparant les
résultats obtenus avec une solution analytique à ceux obtenus avec le modèle géné-
rique. Cette étude a aussi permis de souligner l’importance du respect des hypothèses
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de contraintes planes. En effet, la solution analytique n’est pas contrainte à respecter
cette hypothèse, et pour certains cas de chargement et certains élancements, l’impor-
tance relative de σ33 ne permet plus de garantir cette hypothèse.

Une seconde étude basée sur la méthode de Rayleigh-Ritz a été présentée. Celle-ci
montre les capacités du modèle à simuler une plaque partiellement recouverte d’un patch
PCLD lorsqu’elle est soumise à une onde plane progressive. Les résultats obtenus sous
forme de vitesse quadratique sont comparés à ceux obtenus avec deux codes de cal-
cul basés sur la méthode des éléments finis tridimensionnels. Une étude énergétique
de la plaque patchée a ensuite été proposée. Celle-ci permet de mener les premières
investigations sur l’origine de la dissipation énergétique des patchs visco-contraints.

Une dernière étude qui propose une méthode inverse d’identification des paramètres
matériaux basée sur notre modèle a été décrite. La méthode permet, à partir d’une me-
sure expérimentale de la vitesse quadratique, d’identifier les paramètres caractéristiques
du matériau viscoélastique. Cependant, cette méthode a permis de mettre au jour les
difficultés d’obtention de ces variables et soulève plusieurs questions sur le plan de la
sensibilité des paramètres, du choix des observables, ainsi que sur le plan expérimental.

Perspectives

Les perspectives à l’issue de ce travail sont multiples. En effet, la simplification de l’écri-
ture (et de l’implémentation) de plusieurs modèles de plaque ouvre la porte à de nouvelles
perspectives en terme de modélisation des plaques :
– Pour les plaques inhomogènes, e.g., les plaques munies d’un patch PCLD, il serait

intéressant d’adapter le modèle utilisé en fonction de la zone, patchée ou non. Pour une
plaque isotrope patchée, il serait possible d’utiliser le modèle HSDT pour la patchée
non traitée, et le modèle de Woodcock pour la partie patchée.

– La méthode de discrétisation des éléments finis, peut être améliorée afin de simplifier
son implémentation.

– Au moyen de la méthode d’obtention des warping functions itératives, il est possible
d’imaginer un algorithme capable d’itérer et d’obtenir un jeu de fonctions local. On
obtiendrait alors des ϕαβ(x, y, z), ce qui permettrait de ne plus avoir l’hypothèse de
constance sur x et y de la répartition des contraintes de cisaillement au travers de
l’épaisseur.

– Afin de ne plus être soumis aux problèmes liés aux hypothèses de contraintes (ou de
déformations) planes, une fonction de description de la déformation transverse pourrait
être implémentée

Au sujet de l’optimisation du dimensionnement des systèmes amortissants, il serait bien
entendu intéressant de coupler un algorithme d’optimisation de la répartition des patchs
sur la plaque au modèle développé afin de pouvoir proposer des configurations optimales.
Il est possible d’implémenter un algorithme similaire à celui proposé pour notre méthode
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d’identification en changeant la fonction objectif.

Certains aspects peuvent être développés au sujet du comportement énergétique des
patchs. L’étude de la cartographie de l’énergie dissipée sur une configuraiton optimi-
sée pourrait éventuellement aider à créer des règles de conception et de répartition des
patchs viscocontraints.

Le sujet est donc encore vaste et plusieurs points méritent d’être étudiés.



A
LIEN AVEC LE MODÈLE DE WOODCOCK

Nous présentons ici le lien entre le modèle décrit dans ce document et les coefficients
proposés dans le modèle de Woodcock [woodcock_free_2008 ]. Chaque coefficient dé-
crit par Woodcock correspond à un terme des matrices [A], [B], [D], [E], [F], [G] ou [H].
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ET FT G
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et

[
H

]
=

1
4

 4λ37 2λ69

2λ69 4λ38

 (A.2)
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avec :

λ15 = λ19

λ25 = λ26 = λ36/2

λ29 = λ30

λ32 = λ33

λ34 = λ35

λ41 = λ49 = λ45/2 (A.3)

λ44 = λ51

λ47 = λ53

λ56 = λ64 = λ60/2

λ59 = λ66

λ62 = λ68



B
MATRICES DE NAVIER COMPLÈTES

Nous présentons ici les matrices complètes [K1], [K2], [K3], [K4], [M1], [M2], [M3] et
[M4] de l’équation (3.40) avec,

[K] =

 K1 K2
K3 K4

 (B.1)

et

[M] =

 M1 M2
M3 M4

 (B.2)

d’où,
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Résumé :

Ce travail traite de la modélisation de structures composites intégrant des éléments amortissants
passifs. Un modèle de plaque "équivalent simple couche" générique utilisant des fonctions de
description du cisaillement transverse est présenté. Plusieurs méthodes d’obtention de ces fonctions
sont décrites, permettant de retrouver des modèles classiques ou issus de la littérature. Deux
nouvelles méthodes d’obtention de ces fonctions sont aussi présentées.
Plusieurs méthodes de discrétisation adaptées au modèle générique sont étudiées. La méthode de
Navier permet de tester la qualité de chaque modèle associé à un jeu de fonctions de description
du cisaillement transverse. La méthode de Rayleigh-Ritz permet l’étude du comportement vibratoire
d’une plaque rectangulaire munie d’un ou plusieurs patchs viscocontraints. Plusieurs éléments finis
issus de la littérature, adaptés au modèle, sont aussi présentés.
À l’aide de la méthode de Navier, une étude numérique du comportement statique et dynamique
de plusieurs configurations de plaques permet la comparaison des différents modèles présentés.
La méthode de Rayleigh-Ritz est utilisée pour étudier le comportement vibratoire d’une plaque
munie d’un patch viscocontraint. Une comparaison des résultats obtenus avec le modèle présenté
et ceux issus de calculs éléments finis tridimensionnels permet de valider notre modèle. Une étude
énergétique de la plaque patchée permet d’illustrer le comportement du patch. Enfin une méthode
inverse d’identification des matériaux viscoélastiques, basées sur une combinaison du modèle décrit
et d’un algorithme génétique, montre une application du modèle.

Mots-clés : Modèle générique, équivalent simple couche, patch viscocontraint

Abstract:

This work is on the subject of modelization of structures treated with passive damping elements. A
generic "equivalent single layer" plate model using transverse shear warping functions is presented.
Several methods to obtain these functions are described, allowing the implementation of classical
models and others issued from the litterature. Two new methods for obtaining these functions are
also presented.
Several discretization methods adapted to the generic plate model are studied. Navier’s procedure
allows the testing of the quality of each model associated with a set of transverse shear warping
functions. Rayleigh-Ritz method allows the study of the vibrational behavior of a rectangular plate
treated with one or several constrained damping patches. Several finite elements issued from the
literature are also presented.
Using Navier’s procedure, a numerical study of the static and dynamic behavior of several plate
configurations allows the comparison of the different plate models. Rayleigh-Ritz method is used to
study the vibrational response of a plate treated with a constrained damping patch. A comparison of
the results with those obtained with three dimensional finite element calculations permits the model
validation. An energetic study of the patched plate allow us to understand the constrainted damping
patch behavior. Finally, an inverse method, allowing the identification of the properties of viscoelastic
materials, based on a combination of the presented model and a genetic algorithm, shows a possible
application of the model.

Keywords: Generic model, equivalent single layer, constrained damping patches


	Introduction
	1 État de l'art
	1.1 Présentation générale du problème
	1.2 Traitements amortissants des plaques
	1.2.1 Traitement adjoints à la structure : Patchs viscoélastiques contraints et non contraints
	1.2.2 Traitements amortissants dérivés
	1.2.3 Amortisseurs viscoélastiques accordés
	1.2.4 Incorporation des traitements amortissants dans les structures

	1.3 Études expérimentales des patchs viscocontraints
	1.4 Modèles de plaque multicouche
	1.4.1 Solutions exactes
	1.4.2 Théories classiques des plaques
	1.4.3 Modèles de plaque Zig-Zag
	1.4.4 Formulations unifiées
	1.4.5 Modélisation de l'amortissement

	1.5 Méthodes de discrétisation adaptées aux modèles de plaque
	1.5.1 Procédure de Navier
	1.5.2 Méthode de Rayleigh-Ritz
	1.5.3 Méthode des éléments finis

	1.6 Optimisation de l'amortissement dans une structure patchée
	1.7 Conclusion

	2 Modèle établi sur la base du champ de déplacements
	2.1 Définition d'un stratifié
	2.2 Généralités sur le champ de déplacements
	2.3 Champs de déformations et de contraintes
	2.4 Énergie de déformation
	2.5 Énergie cinétique
	2.6 Équations d'équilibre du système
	2.7 Fonctions de description du cisaillement transverse : Warpings functions
	2.7.1 Formulation classique : Mindlin-Reissner
	2.7.2 Reddy
	2.7.3 Woodcock
	2.7.4 Warping functions constituées de polyômes cubiques par couche
	2.7.5 Warping functions issues des contraintes de cisaillement


	3 Méthodes de discrétisation
	3.1 Méthode de Rayleigh-Ritz
	3.1.1 Problème associé
	3.1.2 Structure modélisée
	3.1.3 Base implémentée
	3.1.4 Formulation énergétique
	3.1.5 Recherche des valeurs et vecteurs propres
	3.1.6 Équations du mouvement forcé du système
	3.1.7 Post-traitement

	3.2 Procédure de Navier adaptée à un stratifié quelconque
	3.2.1 Problème associé
	3.2.2 Champ de déplacement

	3.3 Méthode des éléments finis
	3.3.1 Présentation générale
	3.3.2 Formulation soumise au blocage des plaques en cisaillement
	3.3.3 Formulation à l'aide d'éléments finis à continuité C1


	4 Résultats numériques
	4.1 Validation du modèle avec la méthode de Navier
	4.1.1 Plaque composite rectangulaire
	4.1.2 Panneau sandwich carré
	4.1.3 Plaque composite bi-couche à séquence d'empilement antisymétrique
	4.1.4 Plaque composite avec un seul pli
	4.1.5 Plaque composite avec une séquence d'empilement symétrique

	4.2 Réponse d'une plaque patchée soumise à une onde plane progressive
	4.2.1 Configuration test étudiée
	4.2.2 Comparaison avec deux modèles éléments finis tridimensionnels
	4.2.3 Comparaison à plus haute fréquence avec un modèle élément finis bi-dimensionnel
	4.2.4 Discussion
	4.2.5 Analyse énergétique de la plaque patchée 

	4.3 Analyse inverse des paramètres matériaux d'une plaque en vibration
	4.3.1 Méthode utilisée
	4.3.2 Identification des paramètres caractéristiques d'un matériau viscoélastique
	4.3.3 Discussion à propos de la méthode d'identification


	Conclusions et perspectives
	Bibliographie
	A Lien avec le modèle de Woodcock
	B Matrices de Navier complètes

