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ABSTRACT

When solving for a frequency response, structural
damping is modeled as the imaginary part of the
stiffness matrix. This operation can be done on a
nodal basis for a direct frequency response or on a
modal basis for a modal frequency response. For
the latter, since the stiffness matrix is projected on
the modal basis, damping must then also be
projected on the imaginary part of the modal basis.

Generally, accounting for structural damping in
modal frequency response models is done in one of
three ways: spatially uniform damping where the
imaginary part of the dynamic stiffness matrix is
directly proportional to its real part. As this operation
can be done at every frequency, damping for this
model can be frequency dependent. For spatially
non-uniform damping, the damping must be
projected on a modal basis. If the damping is non-
frequency dependent, the finite element solver can
project localized structural damping using the modal
basis and the nodal stiffness matrix. This method
usually implies that the localized damping cannot be
frequency dependent. For frequency-dependent
damping, one must devise a method to distribute
damping on a modal basis at each frequency. At this
stage of the calculation, the nodal stiffness matrix is
usually not available. Localized damping can
however be projected on a modal basis based on a
chosen quantity. Commercial software solutions
such as VA One have used the nodal mass matrix,
leading to a damping distribution proportional to the
kinetic energy on a modal basis. This method,
however, assumes the damping is directly
proportional to the kinetic energy in the model. Over
the full mode shape, this is a reasonable
assumption as the potential and kinetic energy are
equal at resonance. However, in specific cases
where damping is hyperlocalized and the number of
modes is low, the modal projection using kinetic
energy distribution does not represent the damping
distribution on the modal basis accurately.

This paper proposes a new method to distribute
damping on a modal basis using modal strain
energy. The method gives results identical to the
stiffness matrix projection performed by the finite
element solver, except that it now allows for
frequency-dependent damping. A review of all three
damping distribution techniques is presented. Then,
an example payload model is studied showing a
results comparison for each damping distribution
technique and is compared to a direct frequency
response solution.

1. INTRODUCTION

When predicting the structural response of a test
article in a dynamic environment, damping is often
a variable of adjustment with flexibility and multiple
possible definitions. In this context, damping
represents the dissipation of energy intrinsic to the
vibrating structure.

While damping is a generic term representing the
intrinsic energy dissipation of a vibrating structure, it
materializes through several phenomena: mainly,
rubbing between two components or energy
dissipation intrinsic to the material being deformed.
The topic has been extensively studied, leading to
many different damping models available in the
literature. For example, one can opt to use either
structural or viscous damping, uniform throughout
the structure or non-uniform, or even frequency-
dependent or not. However, we must note that,
often, the abilities of the available damping models
surpass the available information. Commonly, in
industrial models, generic damping schedules are
employed. This often ignores specificities of the
physical model, sometimes even simplifying the
formulation to the point of defining a single damping
value, constant for the whole model and the whole
frequency range. While this can be an option if
conservative predictions are desired, it is certainly
not the most accurate representation of the actual
structure.

For industrial models, structural damping is
commonly employed as it can easily be
characterized and is defined as the imaginary part
of the stiffness matrix, allowing for both non-uniform
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and frequency-dependent damping. However, we
must note once again that, even though the
employed model offers a lot of freedom to define
damping, the corresponding necessary information
may not be available at the time of solving.

Specifically, in the case of the modal frequency
response, the damping information, potentially
spatially non-uniform and frequency dependent,
must be projected on a modal basis. Although
simple in appearance, this last part often requires a
dedicated methodology as the nodal stiffness matrix
is often not available when damping projections on
the modal basis are performed. Multiple methods
have been proposed and studied in the literature [1]

(2] [3] [4] [5]-

This paper gives a review of the available structural
damping projection models currently available in the
VAOne software and details a proposed
implementation of the strain energy damping
distribution model. Finally, an example structure
submitted to a random diffuse acoustic field is
studied where the effect of the different damping
models are compared to one another.

2. AVAILABLE DAMPING PROJECTION
MODELS

Typically, modal frequency response solutions have
limited damping modeling options. As damping
must be expressed on a modal basis, the two
simplest ways of accounting for damping in a
simulation model are:

. to assume the damping uniform throughout
the model,
. to project from the stiffness matrix as the

normal mode analysis as performed by the finite
element solver.

However, one may also choose a modal quantity of
reference and project damping values at every
frequency the modal is solved. This strategy is
developed below.

2.1.0verview of the modal frequency response

Fundamentally, the dynamic behavior of a structural
system is described by a frequency-dependent
dynamic stiffnress matrix D(w) linking the
displacement response vector u to the force vector

f:
D(w)u=f (1)

The formulation can be adapted for random
vibration with the following:

D(m)HSuuD((D) = Sff (2

where S, and Sy represent the cross-spectral

response and the cross-spectral loading
respectively. For notation simplicity, the following
will use the deterministic notation.

The real part of the dynamic stiffness matrix is built
with the static stiffness matrix K and mass matrix M
for a given angular frequency w:

D(w) = K — w?*M 3)
The modal frequency response projects each

quantity from the nodal basis to the modal basis
through the vector of the mode shapes P.

Kq = PTKP
Mq =PTMP (4)
fq = PTf

The dynamic stiffness matrix becomes:
[Kq—szq]q:fq ®)

with the response at any point u(x) is expressed as

u@ = ) P@a ®)

Using both the orthogonality of the mode shapes
and modes normalized to a unit of the generalized
mass, we can write:

[wf — w?lq = f; 7

with w;"is the i-th natural frequency" of the
structure.

Overall, this means that the modal frequency
response, when performed outside of the finite
element solver is performed with only the natural
frequencies w; and the corresponding mode shapes
vector P. In this, the structural damping is still
expressed at the imaginary part of the stiffness
matrix. Let D,,,, represent the imaginary part of the
dynamic stiffness matrix, the introduction of the loss
matrix becomes

[wiz + D5 — wZ]q =fi 8

D,,;s Will then vary for each damping projection
model. From now on, this paper will focus on the
different projection models used to describe D,,.

2.2.Spatially uniform damping

Although the simplest, a spatially-uniform damping
model is also the most commonly used. In this
formulation, the modal damping is set to be directly
proportional to the modal stiffness matrix.
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Dloss (w) = U(w) Kmodal

i ©

Dloss(w) = TI(CU) (F
This formulation does allow for frequency
dependence and is accommodating well the
damping schedules mentioned in the introduction.

2.3.Imported modal damping

Similarly to the operations performed in equation
(4), most finite element solvers also project the
imaginary part of the nodal stiffness matrix to the
modal stiffness matrix. Therefore, we have:

Dyoss = P Im(K) P (10)

The advantage here is the ability to define spatially
non-uniform damping, however, in this case, K is
not frequency dependent, and there D,,. is not
frequency dependent.

2.4.Kinetic energy proportional damping

To accommodate both frequency-dependent and
spatially non-uniform damping, the modal damping
projection has to be performed at every frequency
during the solving process with a quantity of
reference. The quantity should vary for every mode
and spatially. Initial implementations in VA One
used the kinetic energy for this process, in which
case D,,,; becomes

Dyyss () = [ing(@)a]
w Tn1
with ns(w) _ YFE Subsm Ty, (@) Py My, Py

T
ZFE Subs,m Ps mmPs

(11)

for mode s and subsystem m. The validity of this
assumption relies on the fact that it is expected for
the kinetic energy to be proportional to the strain
energy. Validation studies have shown that this
assumption is valid when subsystems have a large
number of modes. However, it typically finds its
limitation when damping is hyper-localized on a
model and greater care must be taken when
projecting damping on a modal basis.

Effectively, this method determines unique values of
modal damping for each frequency at which we are
solving. This allows for frequency-dependent
damping.

2.5.Strain energy proportional damping

To project spatially non-uniform and frequency-
dependent damping onto the modal basis with the
same accuracy as in equation (10), a newly
implemented method distributing the damping
proportionally to the modal strain energy is
proposed. The method can then evaluate
frequency-dependent modal damping distributed
similarly to the projection done by the finite element

solver. With this, the diagonal terms of D, are
equal to those obtained by the finite element solver
for a given frequency. The proposed formulation is
then written as

Dioss (w) = [inS ((‘)) w?%,s]
ZFE Subs,m nm(w) Eg,m (12)
ZFE Subs,m VEss,m

with ns(w) =

and VE{,, is the total strain energy of modes and
subsystem.

The challenge of the implementation of this method
is to make available the strain energy proportion for
each mode available into a separate solver outside
of the finite element solver without exporting the
whole stiffness matrix which can be cumbersome.

For this, some finite element solvers, such as ESI’'s
Virtual Performance Solution, can output the
proportion of modal strain energy for each PID and
each mode. This proportion can be expressed as a
percentage of the modal strain energy, pgz,,

defined as

Esm
I 13
PESm ZFE Subs,m VEg,m ( )
Then equation (12) becomes
Dloss(w) = [ins(w)wrzl,s]
(14)

with 75(@) = ) np(@)pee,,
PID,m

As mentioned above, pge, is directly available in the

log file as shown in Figure 1 which makes the
implementation and prototyping of this damping
projection model implementation simple.

# INFC *** EIGEN MODE NOC. 10

TRANSLATICONAL SCALING FACTOR = 1.4134E-01

672 SOLUTION AT EIGEN MODE NO. 10
73 EEAA AR AT A AR A AA AR A A AR AT H AR A
EIGEN FREQUENCY................
INTERNAL ENERGY.....uvvnvuninnn
EXTERNAL WORK............ P
TOTAL ENERGY.....tnocvnrnnnninns
SOLID HOURGLASS ENERGY.........
SHELL HOURGLASS ENERGY.........
CONTACT SPRING WORK............
81 CONTACT FRICTICHN ENERGY........
6582 CONTACT DAMPING ENERGY.........

INTERNAL EOURGLASS TOTAL
PART ID ENERGY ENERGY
3 24.69 % 0.00 %

TCTAL 4.35E+03 0.00E+00 4.35E+03

Figure 1 - Strain energy per part ID in a finite
element solver log file. The strain energy here is
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referred at internal energy.

Similarly to the kinetic energy proportional damping,
this method effectively calculates unique values of
modal damping for each frequency we are solving.
It is worth noting that, for the same values of
damping at a given frequency, the modal damping
calculated with this method is identical to the
imported modal damping method discussed in 2.3.

3. EXAMPLE PAYLOAD AND DAMPING
MODEL COMPARISON

3.1.Reference model and input data

So to compare the different damping projection
models presented in section 2, a generic satellite
structure submitted to a diffuse acoustic field
modeled with the boundary element method. This
type of model is an industry standard and has been
presented and reviewed extensively [6] [7] [8]. While
being a fully coupled model, the response of the
structure has the form of a modal frequency
response, and therefore, damping must be defined
on a modal basis.

In this model, each part ID is assumed to have a
well-characterized material damping as a function of
the frequency.

Figure 2 - Studied satellite structure

The damping spectrum of each material
construction is described in Figure 3 and the
corresponding location on the structure is shown in

Figure 4.
Damping loss factor spectra

10.0 108.0 1000.0

5%

1%
Frequency (Hz)

Structural Damping Loss Factor (%)

Sandwich Flexure

Metallic Parts

Tuned Damper

Composite panel

Average Uniform Damping

Figure 3 - Characterized damping loss factor
spectra for each construction

- Composite panel DLF
- Metallic panels DLF
- Sandwich panels DLF

' Data recovery location

Figure 4 - Construction description of the
representative structure

Figure 3 also shows the average damping spectrum
used for the spatially uniform damping model
described in 2.2. For the imported modal damping,
the finite element solver is using a single constant
value per part ID over the frequency range.
Typically, an average value over a given frequency
range is used. For this study, the values in Table 1
are used for this model.
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Table 1 - Frequency average values for each part
for the imported damping model

Sandwic | Metallic Tuned
h Flexure Parts

Composit
Damper e panel

Average
damping
value up
to 200Hz

3.80% 1.25% 12.14% 1.89%

Figure 4 also shows 6 key data recovery locations
(named Reflector — 1, Reflector — 2, Sandwich — 1,
Sandwich — 2, Solar Array — 1, Solar Array — 2)
where the structural response is recovered and
used for comparison.

3.2.Single frequency point implementation
verification

To validate the implementation of the projection
algorithm we can set a special version of the
imported modal damping such that the damping set
on the finite element model match the damping
values from the spectra defined in Figure 3 at a
given frequency. We then expect that the
corresponding imported modal damping matches
exactly the strain-energy damping. For this
verification, we are choosing the 127.43 Hz
frequency for this exercise as we know the response
of the solar array is very different from the strain-
energy proportional damping model, and therefore
different from the other methods. Table 3 shows a
summary of the calculated modal damping at
127.43 Hz, with the first three modes and the last
mode. The green section of the table are showing
the minima et maxima of the corresponding
columns as well as the RMS values of those
columns. We can see that the calculated modal
damping is similar for both methods (the RMS of the
damping value difference between both methods is
under 2%). Minor differences are attributed to the
number of digits present in the log file (see Figure
8) for the strain energy distribution as well as an
interpolation function used for the damping loss
factors in the code.

Table 2 - Damping values at 127.43 Hz from

Figure 3
Hz Sandwic | Metallic | Tuned Composit
h Flexure Parts Damper e panel
Damping
value at o o o o
127.43 3.51% 1.69% 11.82% 1.52%
Hz

Table 3 - Modal damping comparison at 127.43 Hz

Modal
Damping from Modal damping
p' g. from Finite Difference
Projection
) Element Solver
algorithm
Maximum 0.0876 0.0972 3.49%
Mode # |Minimum 0.0155 0.0151] -10.99%
RMS 0.0200 0.0202 1.81%
0.0168 0.0167| 0.84%
0.0168 0.0166 0.84%
3 0.0168 0.0167| 0.83%
3244 0.0162 0.0161] 0.89%

3.3.Results comparison

Figure 5 shows responses at location “Sandwich 1”
for all 4 damping projection models. We first notice
all 4 response curves are fairly similar in terms of
trend. Differences between curves are localized to
given frequencies where either a given mode is
active or a frequency spectrum has a higher value
of damping.

Out of all four methods, the Strain Energy
Proportional damping gives results that differ the
most from the other three methods. This is because
the strain energy method allows for an accurate
projection of the local damping values on a modal
basis while allowing for frequency-dependent
damping. This model illustrates this well as the
damping here is both very localized and frequency
dependent.

We also observe that as the frequency increases,
responses from all four methods are closer to each
other. This observation is particularly true when
comparing the kinetic energy proportional damping
and the strain energy proportional damping, as it is
assumed that both methods trend to similar results
as the frequency and modal density increase.
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Sensor Response-Sandwich - 1
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|
100
Frequency [Hz]

Figure 5 - Sandwich 1 location structural response
comparison for the four damping distribution models

These observations can be reproduced on other
sensor locations in Figure 6. While Figure 7
reproduces some of these observations, the results
convergence between the strain energy and kinetic
energy proportional damping project models is less
obvious and may need to be investigated in the
future.

Sensor Response-Reflector - 1

100

/u‘i\ ,/ ’\ J“_

[g"2/ Hy

1
o
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0.0001 F
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Figure 6 - Reflector 1 location structural response
comparison for the four damping distribution models
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Figure 7 - Solar Array 2 location structural response
comparison for the four damping distribution models

Figure 5 shows the clearest differences between the
proposed projection models. At about 47Hz, the
response difference is very clear. When observing
the structural mode shapes at this frequency, we
can see that the solar array of the studied structure
is particularly active. Additionally, the solar array is
connected to the main bus through a truss where
the tune damper damping loss factor is connected.

Figure 8 confirms this observation showing a
concentration of the modal strain energy on the
composite panels at this 47 Hz frequency.

Figure 7 shows a much higher response of the
composite panels at higher frequencies. This is
expected as this panel isn’t stiffened and has very
localized low damping at (1.10%).

SOLUTION AT EIGEN MODE NO. 20
whkkk ko k kb kb dk bk d
EIGEN FREQUENCY.....0uunieenn...
INTERNAL ENERGY. ... uuuunennnn..
EXTERNAL WORK. « vt vvnnnnsensnnnn
TOTAL ENERGY. vt s vvnnnnnennnnnn
SOLID HOURGLASS ENERGY.........
SHELL HOURGLASS ENERGY.........
CONTACT SPRING WORK............
CONTACT FRICTION ENERGY........
CONTACT DAMPING ENERGY.........

* o

ENERGIES PER PARTS
PART ID INTERNAL HOURGLASS INTERNAL

TOTRL
.94 % .00 %
.00 % .00 %
96.94 % .00 %
100011 2.12 % .00 %
TOTAL 4.70E+04 O.00E+00 4.T70E+04

Figure 8 - Strain energy distribution for mode 208.
Here 96.9% of the strain energy is on the
compositive panels (PID 100009).



Proceedings 17" ECSSMET
28 > 30 March 2023 - Toulouse - France

4. CONCLUSIONS

Generally, all four damping models give similar
results. Some differences are observed when large
differences in damping values between the
subsystems are used at a given frequency. One
may choose to attribute differences between the
different models to modeling uncertainties.
However, given the nature of each model, we can
determine which is the most accurate.

The summary review of the different damping
projection models is presented in Table 4.

Table 4 Damping model review table

Spatially Imported Kinetic Strain
uniform modal energy energy
damping damping proportional | proportional
damping damping
Damping Yes No Yes Yes
can be
frequency
dependent
Damping No Yes Yes Yes
can vary
spatially
Assumption No No No No
on damping
projection
model

Though all four models give similar trends, the strain
energy proportional damping is a formulation
without compromise. This model is the most
accurate as it does not make any compromise
between accuracy and flexibility. Its current
implementation uses strain energy distribution per
part as output by the finite element solver.

As this quantity may not be standard on all finite
element solvers, at the time of writing this paper,
alternate implementation options of the strain
energy proportional damping are being considered
such that limited outputs from the finite element
solver would be necessary for this formulation.

REFERENCES

[1] E. Ungar and E. Kerwin, "Loss Factors of
Viscoelastic Systems in Terms of Energy
Concepts," Journal of the Acoustical Society of
America, pp. 954-957, 1962.

[2] M. D. Rao, R. Echempati and S. Nadella,
"Dynamic Analysis and Damping of Composite
Structures Embedded with  Viscoelastic
Layers," Composites Parts, pp. 547-554, 1977.

[3] K. KAWASHIMA, H. NAGASHIMA and H.
IWASAKI, "Evaluation of modal damping ratio

based on strain energy propertional damping
method," Journal of Structural Engineering, pp.
953-965, 1994.

[4] S. H. Zhang and H. L. Chen, "A Study on the
Damping  Characteristics of Laminated
Composites with Integral Viscoelestic Layers,"
Composites Structures, pp. 63-69, 2006.

[5] H. Koruk and K. Y. Sanliturk, "ASSESSMENT
OF MODAL STRAIN ENERGY METHOD:
ADVANTAGES AND LIMITATIONS," in
Proceedings of the ASME 2012 11th Biennial
Conference on Engineering Systems Design
and Analysis , Nantes, France, 2012.

[6] W. B. Tsoi, B. Gardner and V. Cotoni,
"Experimental validation of FE/BEM dynamic
strain model under diffuse acoustic field
loading," 2010.

[71 P. Marshall, T. McQuigg, D. Inoyama, T.
Stoumbos and R. K. Kapania, "Acoustic
Analysis of Spacecraft Cavities using the
Boundary Element Method," in AIAA Scitech,
20109.

[8] L. Lin, A. Castel, A. Kissil, G. Wang and B.
Gardner, "Correlation Study of SWOT Payload
Acoustic Prediction and Test," in AIAA-Scitech,
National Harbor, MD, 2023.



