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ABSTRACT 

When solving for a frequency response, structural 
damping is modeled as the imaginary part of the 
stiffness matrix. This operation can be done on a 
nodal basis for a direct frequency response or on a 
modal basis for a modal frequency response. For 
the latter, since the stiffness matrix is projected on 
the modal basis, damping must then also be 
projected on the imaginary part of the modal basis. 

Generally, accounting for structural damping in 
modal frequency response models is done in one of 
three ways: spatially uniform damping where the 
imaginary part of the dynamic stiffness matrix is 
directly proportional to its real part. As this operation 
can be done at every frequency, damping for this 
model can be frequency dependent. For spatially 
non-uniform damping, the damping must be 
projected on a modal basis. If the damping is non-
frequency dependent, the finite element solver can 
project localized structural damping using the modal 
basis and the nodal stiffness matrix. This method 
usually implies that the localized damping cannot be 
frequency dependent. For frequency-dependent 
damping, one must devise a method to distribute 
damping on a modal basis at each frequency. At this 
stage of the calculation, the nodal stiffness matrix is 
usually not available. Localized damping can 
however be projected on a modal basis based on a 
chosen quantity. Commercial software solutions 
such as VA One have used the nodal mass matrix, 
leading to a damping distribution proportional to the 
kinetic energy on a modal basis. This method, 
however, assumes the damping is directly 
proportional to the kinetic energy in the model. Over 
the full mode shape, this is a reasonable 
assumption as the potential and kinetic energy are 
equal at resonance. However, in specific cases 
where damping is hyperlocalized and the number of 
modes is low, the modal projection using kinetic 
energy distribution does not represent the damping 
distribution on the modal basis accurately. 

This paper proposes a new method to distribute 
damping on a modal basis using modal strain 
energy. The method gives results identical to the 
stiffness matrix projection performed by the finite 
element solver, except that it now allows for 
frequency-dependent damping. A review of all three 
damping distribution techniques is presented. Then, 
an example payload model is studied showing a 
results comparison for each damping distribution 
technique and is compared to a direct frequency 
response solution. 

 

1. INTRODUCTION 

When predicting the structural response of a test 
article in a dynamic environment, damping is often 
a variable of adjustment with flexibility and multiple 
possible definitions. In this context, damping 
represents the dissipation of energy intrinsic to the 
vibrating structure. 

While damping is a generic term representing the 
intrinsic energy dissipation of a vibrating structure, it 
materializes through several phenomena: mainly, 
rubbing between two components or energy 
dissipation intrinsic to the material being deformed. 
The topic has been extensively studied, leading to 
many different damping models available in the 
literature. For example, one can opt to use either 
structural or viscous damping, uniform throughout 
the structure or non-uniform, or even frequency-
dependent or not. However, we must note that, 
often, the abilities of the available damping models 
surpass the available information. Commonly, in 
industrial models, generic damping schedules are 
employed. This often ignores specificities of the 
physical model, sometimes even simplifying the 
formulation to the point of defining a single damping 
value, constant for the whole model and the whole 
frequency range. While this can be an option if 
conservative predictions are desired, it is certainly 
not the most accurate representation of the actual 
structure. 

For industrial models, structural damping is 
commonly employed as it can easily be 
characterized and is defined as the imaginary part 
of the stiffness matrix, allowing for both non-uniform 
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and frequency-dependent damping. However, we 
must note once again that, even though the 
employed model offers a lot of freedom to define 
damping, the corresponding necessary information 
may not be available at the time of solving. 

Specifically, in the case of the modal frequency 
response, the damping information, potentially 
spatially non-uniform and frequency dependent, 
must be projected on a modal basis. Although 
simple in appearance, this last part often requires a 
dedicated methodology as the nodal stiffness matrix 
is often not available when damping projections on 
the modal basis are performed. Multiple methods 
have been proposed and studied in the literature [1] 
[2] [3] [4] [5]. 

This paper gives a review of the available structural 
damping projection models currently available in the 
VAOne software and details a proposed 
implementation of the strain energy damping 
distribution model. Finally, an example structure 
submitted to a random diffuse acoustic field is 
studied where the effect of the different damping 
models are compared to one another. 

2. AVAILABLE DAMPING PROJECTION 
MODELS 

Typically, modal frequency response solutions have 
limited damping modeling options. As damping 
must be expressed on a modal basis, the two 
simplest ways of accounting for damping in a 
simulation model are: 

• to assume the damping uniform throughout 
the model, 

• to project from the stiffness matrix as the 
normal mode analysis as performed by the finite 
element solver. 

However, one may also choose a modal quantity of 
reference and project damping values at every 
frequency the modal is solved. This strategy is 
developed below. 

2.1. Overview of the modal frequency response 

Fundamentally, the dynamic behavior of a structural 
system is described by a frequency-dependent 
dynamic stiffness matrix 𝑫(𝜔) linking the 

displacement response vector 𝒖 to the force vector 

𝒇: 

𝐃(ω)𝐮 = 𝐟 (1) 

The formulation can be adapted for random 
vibration with the following: 

𝐃(ω)𝑯𝑺𝒖𝒖𝐃(ω) = 𝑺𝒇𝒇 (2) 

where 𝑺𝒖𝒖 and 𝑺𝒇𝒇 represent the cross-spectral 

response and the cross-spectral loading 
respectively. For notation simplicity, the following 
will use the deterministic notation. 

The real part of the dynamic stiffness matrix is built 
with the static stiffness matrix 𝑲 and mass matrix 𝑴 

for a given angular frequency 𝜔: 

𝐃(ω) = 𝐊 − ω2𝐌 (3) 

The modal frequency response projects each 
quantity from the nodal basis to the modal basis 
through the vector of the mode shapes 𝑷. 

𝐊𝐪 = 𝐏𝐓𝐊𝐏 

𝐌q = 𝐏T𝐌𝐏 

𝐟q = 𝐏T𝐟 

(4) 

The dynamic stiffness matrix becomes: 

[𝑲𝒒 − 𝝎𝟐𝑴𝒒]𝒒 = 𝒇𝒒 (5) 

with the response at any point 𝑢(𝑥) is expressed as 

𝑢(𝑥) = ∑ 𝑃𝑖(𝑥)𝑞𝑖  (6) 

Using both the orthogonality of the mode shapes 
and modes normalized to a unit of the generalized 
mass, we can write: 

[𝜔𝑖
2 − 𝜔2]𝒒 = 𝒇𝑖 (7) 

with 𝜔𝑖  "is the i−th natural frequency" of the 
structure. 

Overall, this means that the modal frequency 
response, when performed outside of the finite 
element solver is performed with only the natural 
frequencies 𝜔𝑖 and the corresponding mode shapes 

vector 𝑷. In this, the structural damping is still 
expressed at the imaginary part of the stiffness 
matrix. Let 𝐃𝑙𝑜𝑠𝑠 represent the imaginary part of the 
dynamic stiffness matrix, the introduction of the loss 
matrix becomes 

[𝜔𝑖
2 + 𝑖𝐃𝑙𝑜𝑠𝑠 − 𝜔2]𝒒 = 𝒇𝑖  (8) 

𝐃𝑙𝑜𝑠𝑠 will then vary for each damping projection 
model. From now on, this paper will focus on the 
different projection models used to describe 𝐃𝑙𝑜𝑠𝑠. 

2.2. Spatially uniform damping 

Although the simplest, a spatially-uniform damping 
model is also the most commonly used. In this 
formulation, the modal damping is set to be directly 
proportional to the modal stiffness matrix. 
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𝐃𝑙𝑜𝑠𝑠(𝜔) = 𝜂(𝜔) 𝐊𝑚𝑜𝑑𝑎𝑙 

𝐃𝑙𝑜𝑠𝑠(𝜔) = 𝜂(𝜔) 𝜔𝑖
2        

(9) 

This formulation does allow for frequency 
dependence and is accommodating well the 
damping schedules mentioned in the introduction. 

2.3. Imported modal damping 

Similarly to the operations performed in equation 
(4), most finite element solvers also project the 
imaginary part of the nodal stiffness matrix to the 
modal stiffness matrix. Therefore, we have: 

𝐃𝑙𝑜𝑠𝑠 = 𝐏 Im(𝐊) 𝐏T (10) 

The advantage here is the ability to define spatially 
non-uniform damping, however, in this case, 𝐊 is 

not frequency dependent, and there 𝐃𝑙𝑜𝑠𝑠 is not 
frequency dependent. 

2.4. Kinetic energy proportional damping 

To accommodate both frequency-dependent and 
spatially non-uniform damping, the modal damping 
projection has to be performed at every frequency 
during the solving process with a quantity of 
reference. The quantity should vary for every mode 
and spatially. Initial implementations in VA One 
used the kinetic energy for this process, in which 
case 𝐃𝑙𝑜𝑠𝑠 becomes 

𝐃𝑙𝑜𝑠𝑠(𝜔) = [𝑖𝜂
𝑆
(𝜔)𝜔𝑛,𝑠

2 ]  

with 𝜂
𝑠
(𝜔) =

∑ 𝜂𝑚
(𝜔)𝐏𝑠

T𝐦𝑚𝐏𝑠FE Subs,𝑚

∑ 𝐏𝑠
T𝐦𝑚𝐏𝑠FE Subs,𝑚

 
(11) 

for mode 𝑠 and subsystem 𝑚. The validity of this 
assumption relies on the fact that it is expected for 
the kinetic energy to be proportional to the strain 
energy. Validation studies have shown that this 
assumption is valid when subsystems have a large 
number of modes. However, it typically finds its 
limitation when damping is hyper-localized on a 
model and greater care must be taken when 
projecting damping on a modal basis. 

Effectively, this method determines unique values of 
modal damping for each frequency at which we are 
solving. This allows for frequency-dependent 
damping. 

2.5. Strain energy proportional damping 

To project spatially non-uniform and frequency-
dependent damping onto the modal basis with the 
same accuracy as in equation (10), a newly 
implemented method distributing the damping 
proportionally to the modal strain energy is 
proposed. The method can then evaluate 
frequency-dependent modal damping distributed 
similarly to the projection done by the finite element 

solver. With this, the diagonal terms of 𝐃𝑙𝑜𝑠𝑠 are 
equal to those obtained by the finite element solver 
for a given frequency. The proposed formulation is 
then written as 

 

 

𝐃𝑙𝑜𝑠𝑠(𝜔) = [𝑖𝜂𝑆(𝜔)𝜔𝑛,𝑠
2 ]    

with   𝜂𝑠(𝜔) =
∑ 𝜂𝑚(𝜔)𝐄𝑠,𝑚

𝜀  FE Subs,𝑚

∑ 𝐕𝐄𝑠,𝑚
𝜀

FE Subs,𝑚

 
(12) 

and 𝐕𝐄𝑠,𝑚
𝜀  is the total strain energy of mode𝑠 and 

subsystem. 

The challenge of the implementation of this method 
is to make available the strain energy proportion for 
each mode available into a separate solver outside 
of the finite element solver without exporting the 
whole stiffness matrix which can be cumbersome. 

For this, some finite element solvers, such as ESI’s 
Virtual Performance Solution, can output the 
proportion of modal strain energy for each PID and 
each mode. This proportion can be expressed as a 

percentage of the modal strain energy, 𝑝𝐄𝑠,𝑚
𝜀 , 

defined as 

𝑝𝐄𝑠,𝑚
𝜀 =

𝐄𝑠,𝑚
𝜀

∑ 𝐕𝐄𝑠,𝑚
𝜀

FE Subs,𝑚

 (13) 

Then equation (12) becomes  

𝐃𝑙𝑜𝑠𝑠(𝜔) = [𝑖𝜂𝑆(𝜔)𝜔𝑛,𝑠
2 ]    

with   𝜂𝑠(𝜔) = ∑ 𝜂𝑚(𝜔)𝑝𝐄𝑠,𝑚
𝜀  

𝑃𝐼𝐷,𝑚
 

(14) 

As mentioned above, 𝑝𝐄𝑠,𝑚
𝜀  is directly available in the 

log file as shown in Figure 1 which makes the 
implementation and prototyping of this damping 
projection model implementation simple. 

 

Figure 1 - Strain energy per part ID in a finite 
element solver log file. The strain energy here is 



Proceedings 17th ECSSMET  

28 > 30 March 2023 - Toulouse - France 

 

 

referred at internal energy. 

Similarly to the kinetic energy proportional damping, 
this method effectively calculates unique values of 
modal damping for each frequency we are solving. 
It is worth noting that, for the same values of 
damping at a given frequency, the modal damping 
calculated with this method is identical to the 
imported modal damping method discussed in 2.3. 

3. EXAMPLE PAYLOAD AND DAMPING 
MODEL COMPARISON 

3.1. Reference model and input data 

So to compare the different damping projection 
models presented in section 2, a generic satellite 
structure submitted to a diffuse acoustic field 
modeled with the boundary element method. This 
type of model is an industry standard and has been 
presented and reviewed extensively [6] [7] [8]. While 
being a fully coupled model, the response of the 
structure has the form of a modal frequency 
response, and therefore, damping must be defined 
on a modal basis. 

In this model, each part ID is assumed to have a 
well-characterized material damping as a function of 
the frequency. 

 

Figure 2 - Studied satellite structure 

The damping spectrum of each material 
construction is described in Figure 3 and the 
corresponding location on the structure is shown in 

Figure 4. 

 

Figure 3 - Characterized damping loss factor 
spectra for each construction 

 

Figure 4 - Construction description of the 
representative structure 

Figure 3 also shows the average damping spectrum 
used for the spatially uniform damping model 
described in 2.2. For the imported modal damping, 
the finite element solver is using a single constant 
value per part ID over the frequency range. 
Typically, an average value over a given frequency 
range is used. For this study, the values in Table 1 
are used for this model. 
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Table 1 - Frequency average values for each part 
for the imported damping model 

 Sandwic
h Flexure 

Metallic 
Parts 

Tuned 
Damper 

Composit
e panel 

Average 
damping 
value up 
to 200Hz 

3.80% 1.25% 12.14% 1.89% 

Figure 4 also shows 6 key data recovery locations 
(named Reflector – 1, Reflector – 2, Sandwich – 1, 
Sandwich – 2, Solar Array – 1, Solar Array – 2) 
where the structural response is recovered and 
used for comparison. 

3.2. Single frequency point implementation 
verification 

To validate the implementation of the projection 
algorithm we can set a special version of the 
imported modal damping such that the damping set 
on the finite element model match the damping 
values from the spectra defined in Figure 3 at a 
given frequency. We then expect that the 
corresponding imported modal damping matches 
exactly the strain-energy damping. For this 
verification, we are choosing the 127.43 Hz 
frequency for this exercise as we know the response 
of the solar array is very different from the strain-
energy proportional damping model, and therefore 
different from the other methods. Table 3 shows a 
summary of the calculated modal damping at 
127.43 Hz, with the first three modes and the last 
mode. The green section of the table are showing 
the minima et maxima of the corresponding 
columns as well as the RMS values of those 
columns. We can see that the calculated modal 
damping is similar for both methods (the RMS of the 
damping value difference between both methods is 
under 2%). Minor differences are attributed to the 
number of digits present in the log file (see Figure 
8) for the strain energy distribution as well as an 
interpolation function used for the damping loss 
factors in the code. 

 

Table 2 - Damping values at 127.43 Hz from 
Figure 3 

Hz 
Sandwic
h Flexure 

Metallic 
Parts 

Tuned 
Damper 

Composit
e panel 

Damping 
value at 
127.43 

Hz 

3.51% 1.69% 11.82% 1.52% 

 

 

Table 3 - Modal damping comparison at 127.43 Hz 

 

 

 

3.3. Results comparison 

Figure 5 shows responses at location “Sandwich 1” 
for all 4 damping projection models. We first notice 
all 4 response curves are fairly similar in terms of 
trend. Differences between curves are localized to 
given frequencies where either a given mode is 
active or a frequency spectrum has a higher value 
of damping. 

Out of all four methods, the Strain Energy 
Proportional damping gives results that differ the 
most from the other three methods. This is because 
the strain energy method allows for an accurate 
projection of the local damping values on a modal 
basis while allowing for frequency-dependent 
damping. This model illustrates this well as the 
damping here is both very localized and frequency 
dependent. 

We also observe that as the frequency increases, 
responses from all four methods are closer to each 
other. This observation is particularly true when 
comparing the kinetic energy proportional damping 
and the strain energy proportional damping, as it is 
assumed that both methods trend to similar results 
as the frequency and modal density increase. 

Modal 

Damping from 

Projection 

algorithm

Modal damping 

from Finite 

Element Solver

Difference

Maximum 0.0876 0.0972 3.49%

Minimum 0.0155 0.0151 -10.99%

RMS 0.0200 0.0202 1.81%

0.0168 0.0167 0.84%

0.0168 0.0166 0.84%

0.0168 0.0167 0.83%

… … …

0.0162 0.0161 0.89%3244

Mode #

1

2

3

…
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Figure 5 - Sandwich 1 location structural response 
comparison for the four damping distribution models 

These observations can be reproduced on other 
sensor locations in Figure 6. While Figure 7 
reproduces some of these observations, the results 
convergence between the strain energy and kinetic 
energy proportional damping project models is less 
obvious and may need to be investigated in the 
future. 

 

Figure 6 - Reflector 1 location structural response 
comparison for the four damping distribution models 

 

 

Figure 7 - Solar Array 2 location structural response 
comparison for the four damping distribution models 

Figure 5 shows the clearest differences between the 
proposed projection models. At about 47Hz, the 
response difference is very clear. When observing 
the structural mode shapes at this frequency, we 
can see that the solar array of the studied structure 
is particularly active. Additionally, the solar array is 
connected to the main bus through a truss where 
the tune damper damping loss factor is connected. 

Figure 8 confirms this observation showing a 
concentration of the modal strain energy on the 
composite panels at this 47 Hz frequency. 

Figure 7  shows a much higher response of the 
composite panels at higher frequencies. This is 
expected as this panel isn’t stiffened and has very 
localized low damping at (1.10%). 

 

Figure 8 - Strain energy distribution for mode 208. 
Here 96.9% of the strain energy is on the 
compositive panels (PID 100009). 
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4. CONCLUSIONS 

Generally, all four damping models give similar 
results. Some differences are observed when large 
differences in damping values between the 
subsystems are used at a given frequency. One 
may choose to attribute differences between the 
different models to modeling uncertainties. 
However, given the nature of each model, we can 
determine which is the most accurate. 

The summary review of the different damping 
projection models is presented in  Table 4.  

Table 4 Damping model review table 

 Spatially 
uniform 
damping 

Imported 
modal 

damping 

Kinetic 
energy 

proportional 
damping 

Strain 
energy 

proportional 
damping 

Damping 
can be 

frequency 
dependent 

Yes No Yes Yes 

Damping 
can vary 
spatially 

No Yes Yes Yes 

Assumption 
on damping 
projection 

model 

No No No No 

 

Though all four models give similar trends, the strain 
energy proportional damping is a formulation 
without compromise. This model is the most 
accurate as it does not make any compromise 
between accuracy and flexibility. Its current 
implementation uses strain energy distribution per 
part as output by the finite element solver.  

As this quantity may not be standard on all finite 
element solvers, at the time of writing this paper, 
alternate implementation options of the strain 
energy proportional damping are being considered 
such that limited outputs from the finite element 
solver would be necessary for this formulation. 
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