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ABSTRACT 

Traditionally, frequency response models are solved 

using either a constant bandwidth or an n-th octave 

band. For both vibration and acoustic analyses, it is 

commonly known that one is expected to solve a model 

with a sufficiently narrow band to ensure the overall 

response of the mechanical system is accurately 

captured. However, when specifically capturing the 

overall level, one needs to ensure the highest values of 

the response curve are correctly captured while a 

controlled amount of uncertainty can be accepted when 

estimating the lowest response point of the curve.  

We propose a Bayesian optimization technique designed 

to capture the overall level using a Matern kernel. The 

proposed method enables estimations of the overall 

levels of a response curve using approximately five 

times fewer frequency points while providing a given 

uncertainty on the overall level.  

This paper describes the architecture of the proposed 

process, and demonstrates validation using individual 

response curves followed by an integrated process with 

simulation software. 

INTRODUCTION 

Accurate frequency response models are crucial in 

vibration and acoustic analyses. These models require 

the precise capture of system responses over specific 

frequency bands to ensure reliable predictions. 

Traditional methods often involve extensive 

computations, which can be resource-intensive and 

time-consuming. Such approaches typically involve 

solving models using either constant bandwidths or n-th 

octave bands with frequency steps that are fine enough 

to ensure an accurate representation of the overall 

response of mechanical systems.  

However, when focusing only on the overall level, the 

basic frequency domain definitions can be revised. One 

can choose to accurately capture the highest response 

values while tolerating some uncertainty in estimating 

the lowest response points. This generally leads to a 

reasonably accurate capture of the overall level. 

Bayesian optimization presents a promising technique to 

address these challenges. Specifically, by utilizing an 

appropriate kernel and tuned decision algorithm within 

a Bayesian framework, it is feasible to estimate overall 

response levels effectively with significantly fewer 

frequency points, balancing computational efficiency 

with the accuracy provided by probabilistic estimations. 

Bayesian methods, known for their robust statistical 

inference and parameter estimation capabilities, have 

been extensively applied in various engineering 

problems, including model updating and uncertainty 

quantification [1]. The utilization of Bayesian 

optimization, particularly with Gaussian process (GP) 

surrogate models, has shown efficacy in achieving rapid 

and precise optimization in high-dimensional spaces [2]. 

In the context of frequency response models, Bayesian 

optimization facilitates the construction of a 

probabilistic model of the objective function, enabling 

efficient exploration and exploitation of the search 

space to identify optimal frequency. This approach not 

only reduces the computational burden but also 

enhances the robustness of the estimations by 

integrating prior knowledge and observed data into the 

model [3]. 

By focusing on capturing the highest response values 

accurately while accepting controlled uncertainty in the 

lower response points, the method proposed in this 

paper achieves a balance between accuracy and 

computational efficiency. This is particularly 

advantageous in practical applications where 

computational resources and time are often constrained. 

The proposed method involves constructing a surrogate 

model using Gaussian processes, which is then 

optimized using Bayesian techniques to identify the 

most informative frequency points. This approach 

reduces the required frequency points by approximately 

five times compared to traditional methods, thereby 

significantly enhancing the efficiency of the modelling 

process [4]. 

To validate the proposed method, individual response 

curves are analyzed, followed by integration with 

simulation software and a coupled “finite element, 

boundary element method (FE-BEM)” to assess its 

performance in practical scenarios. The results indicate 

that the proposed Bayesian optimization approach not 

only maintains high accuracy in capturing overall 



 

 

response levels but also offers substantial improvements 

in computational efficiency. 

METHODOLOGY 

Bayesian optimization is selected due to its robustness 

in handling complex, noisy functions with limited data 

points. Initially, a standard Radial Basis Function (RBF) 

kernel was considered for the Gaussian process model. 

The RBF kernel, also known as the squared exponential 

kernel, is defined by: 

𝑘𝑅𝐵𝐹(𝑑) =  −exp (−
𝑑2

2
)

𝜈

 

where: 

• 𝑑 =
|f − f′|

𝑙
 is the distance between two 

frequency points f and f ′, 

• 𝑙 is the length scale parameter. [5] 

While the RBF kernel is effective for very smooth 

functions, it was found to be unsuitable for this 

application due to its tendency to overly smooth the 

response curves, which do not reflect the true nature of 

vibration and acoustic signals characterized by abrupt 

changes and peaks. 

To address this, the Matern kernel was chosen [5]. The 

Matern kernel, a popular choice in Gaussian process 

modeling, is employed for its flexibility and ability to 

model various degrees of smoothness in the response 

curves. This kernel is particularly effective in scenarios 

where the response function is not smooth but rather 

characterized by abrupt changes or discontinuities. 

Additionally, the Matern kernel allows for peaks in the 

curve, which works well for capturing the sharp peaks 

often observed in frequency response functions. 

The Matern kernel covariance function is defined as: 

𝑘𝜈(𝑑) =  
21−𝜈

Γ(𝜈)
( √{2𝜈}𝑑)

𝜈

𝐾𝜈  ( √{2𝜈}𝑑) 

• 𝜈 controls the smoothness of the function, 

• Γ(𝜈) is the Gamma function, 

• 𝐾𝜈 is the modified Bessel function of the 

second kind. 

Constructing the Surrogate Model 

The first step in the proposed methodology involves 

constructing a surrogate model using Gaussian 

processes (GPs). Gaussian processes are non-parametric 

models that provide a probabilistic approach to 

modeling complex functions [6]. The surrogate model 

approximates the true response function, capturing its 

key characteristics while being computationally less 

demanding. 

The process begins by selecting a set of initial 

frequency points, which are used to evaluate the 

response function. These points are chosen based on 

prior knowledge or through a preliminary experimental 

design. In the examples described in this paper, we 

found that the one third octave band provides that 

satisfactory initial data set; however, this may need to 

be adjusted for different models. The response values at 

these points serve as the training data for the GP model. 

The Matern kernel is then used to define the covariance 

structure of the GP, enabling the model to capture the 

dependencies between different frequency points. 

Optimization Using Bayesian Techniques 

Once the surrogate model is established, Bayesian 

optimization is employed to identify the most 

informative frequency points that need to be evaluated 

to estimate the overall level accurately.  

As a reminder, the overall level is defined as the integral 

of the PSD vibration response of the structure excited 

by a diffuse acoustic field [7] . For a given model it is 

estimated by: 

𝑂. 𝐿.  =  √∑ 𝑆𝑛
(𝑝𝑠𝑑)

∆𝑓

𝑛

 

This can be rewritten as: 

𝑂. 𝐿.  = ∫ 𝑆𝑛
(𝑝𝑠𝑑)(𝑓)d𝑓

end band

start band

 

The main idea behind this optimization process is to 

estimate this overall level by minimizing the number of 

frequency points. 

The Bayesian optimization process involves the 

following steps: 

1. Acquisition Function Selection: An 

acquisition function is chosen to guide the 

search for the next frequency point to evaluate. 

The acquisition function balances exploration 

(sampling points with high uncertainty) and 

exploitation (sampling points with high 

expected response). This part of the algorithm 

requires the most adaptation to estimate the 

overall level of the response while reducing the 

uncertainty of the overall response in the 



 

 

model. A combination of exploitation and 

exploration is used, formulated as follows: 

𝛼(𝑓) = 𝜎(𝑓) ∙ (𝜇(𝑓) + 𝜎(𝑓)) 

where: 

• 𝜎(𝑓)is the uncertainty (standard deviation) at 

frequency 𝑓, 

• 𝜇(𝑓) is the predicted mean level at frequency 

𝑓. 

The next frequency point to be solved is the frequency 𝑓 

where 𝛼 is maximum. As the frequency point is solved, 

𝜎(𝑓) tends to zero, this 𝛼(𝑓) tends to zero and the next 

frequency solved is a combination of levels and 

uncertainty. This was found to best identify the overall 

level of the function while minimizing the number of 

frequency points. 

2. Iterative Updating: The surrogate model is 

iteratively updated with new frequency points. 

At each iteration, the acquisition function is 

maximized to select the next frequency point, 

which is then evaluated using the true response 

function. This new data point is then added to 

the training set, and the GP model is updated 

accordingly. 
 

3. Convergence Criteria: The optimization 

process continues until a convergence criterion 

is met. This criterion can be based on a 

predefined number of iterations, a threshold on 

the acquisition function value, or a desired 

level of uncertainty in the overall level 

estimation. In our model, we calculate the 

overall level for the vibration level at a given 

target location and continue to convergence. In 

the experiments presented below, we defined 

convergence on a stable solution as an overall 

level change by less than 1% when adding 10 

new frequency points. 

Reducing the Number of Frequency Points 

A key advantage of the proposed methodology is its 

ability to reduce the required number of frequency 

points by approximately five times compared to 

traditional methods. This is illustrated by Figure 3 

where both the original function (orange) and the 

approximated function (blue) are shown. We see here 

that the function can easily be approximated with a 

reduced number of points. This reduction is achieved 

through the efficient sampling strategy of Bayesian 

optimization, which focuses on the most informative 

points rather than uniformly sampling the entire 

frequency range. This approach not only decreases the 

computational burden but also maintains the accuracy of 

the overall level estimation. Given a reasonable number 

of frequency points on the initial surrogate model, the 

estimation of the overall level can be obtained through 

an iterative gaussian optimization process.  

Practical Applications and Advantages 

The proposed methodology is particularly advantageous 

for frequency response models where computational 

resources and time are constrained. For example, in 

vibration response predictions to structural or acoustic 

loads, where frequent updates to the frequency response 

are needed for the different design iterations, reducing 

the number of frequency points can significantly speed 

up the analysis without compromising accuracy. 

Additionally, this method can be applied to acoustic 

analyses of large mechanical systems such as launch 

vehicles, allowing for quick and reliable estimations of 

overall sound pressure levels while controlling 

uncertainties, ultimately facilitating timely decision-

making. 

The proposed method can be applied to coupled models, 

include those that are strictly finite element based or 

those that combine the finite element method with 

others including boundary element methods and 

statistical analysis. 

By integrating Bayesian optimization with a Matern 

kernel to create a smart acquisition function, this 

methodology offers a robust and efficient solution for 

estimating the overall levels of frequency response 

models, balancing the need for accuracy with 

computational efficiency. 

VALIDATION AND APPLICATIONS 

Individual frequency response curve 

To validate the proposed method we utilize a known 

frequency response curve with a defined overall level to 

create a surrogate function. The optimization algorithm 

is then run until the known overall level is reached. 

The initial function is a vibration response is shown in 

Figure 1 with an overall level of 61.5 g rms that uses 

253 frequency points from 20 to 2000 Hz in the 1/36th 

Octave Band. Given the response curve and the level of 

damping on the structure, sampling the curve with 

narrower frequency bands should not affect the overall 

level. For convenience, all the results presented below 

use a Power Spectral Density (PSD) in g^2/Hz. 



 

 

 

Figure 1: PSD vibration response curve 

As presented in the previous section an initial surrogate 

function is initially approximated using 21 frequency 

points in the one third octave band. The above 

frequency response is first approximated with the 

following curve: 

 

Figure 2: PSD Vibration curve and initial surrogate function 

in the one third octave band with 95% confidence interval 

The confidence interval looks unusual due to the 

logarithmic scale of the graph. At sample points, 

uncertainty goes to zero. Model parameters appear to be 

well tuned, as the reference curve is contained within a 

95% confidence interval. 

Note that this paper does not discuss the determination 

of the length scale and 𝜈 parameters. These were 

determined using multiple vibration response curves and 

are set to 𝑙 = 0.671 and 𝜈 = 0.75. Values were 

determined using a publicly available optimization 

algorithm in the Python library sklearn [8]. 

After parameter selection using the described 

optimization process, the proposed acquisition function 

is then used to determine additional frequencies at 

which the response function should be sampled. Figure 

3 shows the initial curve (orange), augmented by 31 

additional frequency points where the convergence 

criteria is met. 

 

Figure 3: PSD Vibration curve and optimized surrogate 

function with 95% confidence interval 

 

Figure 4 shows that the estimation error decreases as 

additional frequency points are added to the surrogate 

function.  

 

Figure 4: Error on overall level as frequency points are added 

to the surrogate function 

To test the algorithm stability, the Bayesian 

optimization algorithm is run to include up to 100 

frequency points, resulting in the response curve shown 

in Figure 5 and corresponding error plot shown in 

Figure 6. 



 

 

 

Figure 5: Second PSD Vibration curve and optimized 

surrogate function with 95% confidence interval 

 

Figure 6: second Error on overall level as frequency points 

are added to the surrogate function 

Although the error on the overall level oscillates 

between 0 and 1% over a number of iterations, the 

algorithm is generally stable as all of the data recovery 

locations we are tried lead to a converged value. 

However, before extensive use in an industrial 

simulation, additional robustness validation should be 

performed. Nevertheless, for the purpose of this paper 

can be used to estimate overall levels. This stability 

confirms the proposed convergence criteria described 

previously. 

We next applied the model to additional response curves 

(Fig 7, Fig. 9).  

 

Figure 7: Third PSD Vibration curve and optimized surrogate 

function with 95% confidence interval 

 

Figure 8: Third error on overall level as frequency points are 

added to the surrogate function 

For the experiment shown in Fig. 7, It is worth noting 

that the error graph is the lowest with the 30th frequency 

point, despite the fact that the optimization has not 

converged, which occurs after approximately 50 

frequency points and the error on the overall level is 

below 4%; this could be explained by a large peak at 50 

Hz is not accounted for. However, the error can still be 

considered to be minimal. Additional tests with stricter 

convergence criteria showed that all peaks can be 

captured by the proposed algorithm (Fig. 9). However, a 

4% error on the estimation of the overall level can 

generally be deemed acceptable on simulation models, 

as other sources of error exist between simulation and 

test. 

Another standard response curve showing the 

satisfactory performance of the proposed algorithm is 

shown below. 



 

 

 

Figure 9: Fourth PSD Vibration curve and optimized 

surrogate function with 95% confidence interval 

The error graph is: 

 

Figure 10: Fourth error on overall level as frequency points 

are added to the surrogate function 

When considering the 95% confidence interval, 

assuming that the error at a given frequency is 

uncorrelated to the error at another frequency, we can 

calculate a standard deviation for the overall level using 

the following formula: 

𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙 = √∑ 𝜎(𝑓𝑖)
2 

For five consecutive curves, we are the comparing the 

overall level, of the overall standard deviation and the 

residual error: 

Curve # Overall level 

[g rms] 

𝜎𝑜𝑣𝑒𝑟𝑎𝑙𝑙  
[g rms] 

Residual 

error % 

1 60.2 1.0 2.0 

2 55.4 1.1 1.2 

3 27.1 0.8 3.6 

4 27.1 0.8 1.3 

5 8.5 0.3 0.4 

The values above show the consistency of the algorithm 

across several curves. The maximum overall standard 

deviation remains low and therefore the calculated 

overall level is reliable, suggesting that this method can 

be used in an engineering study. 

For the 5 curves studied in this section, the maximum 

number of frequency points to reach convergence is 56. 

Considering the data source is comprised of 253 

frequency points, this means that we can correctly 

approximate the response curve with almost 1/5th of the 

frequency points. On a frequency response calculation, 

this should theoretically translate into a nearly 5x 

speedup on the computation time. 

Integration with a coupled FE-BEM model 

A coupled Finite Element-Boundary Element Model 

(FE-BEM) in VA One. The model applies a Diffuse 

Acoustic Field modeled as a sum of individual plane 

waves. This type of model is standard for most payload 

analysis to evaluate the vibration and stresses. 

 

Figure 11: VA One FE-BEM Model render 

 

For this model, we aim to predict the overall vibration 

response at 6 locations from 20 to 500 Hz. The 

structural part of the model functions as a modal 

frequency response. Structural modes are calculated up 

to 720 Hz. Both the BEM and the coupled model are 

solved for each individual frequency requested by the 

algorithm. 



 

 

The algorithm was modified so that a single simulation 

model is used to predict the responses at 6 individual 

locations. For this, an individual surrogate function is 

generated for each of the 6 recovery locations. Then, for 

the optimization process, the highest value of the 

acquisition function determines the next frequency to be 

solved, though each new frequency point feeds all 6 

surrogate functions. The model is considered to be 

solved once all 6 surrogate functions meet the 

convergence criterium previously defined. 

After running the algorithm, convergence was reached 

on all 6 sensors after 68 iterations.  

 

Structural response results are presented in the figure 

below: 

 

Figure 12: Vibration response at 6 locations on the VA One 

FE-BEM Model 

When compared to a traditional model solved in the 

1/36th Octave band the results compare as follows: 

Curve 

Bayesian 

optimization 

overall level 

1/36th 

Octave 

band solve 

overall 

level 

Difference 

(%) 

1 24.1 24.3 0.8% 

2 15.1 15.8 4.4% 

3 7.4 7.4 0.0% 

4 3.1 3.1 0.0% 

5 2.5 1.8 -38.9% 

6 48.0 48.2 0.4% 

Convergence curves are presented in the figure below: 

 

Note that the model is considered to be solved when the 

convergence criteria is met on all 6 curves. When 

looking at the difference of overall level between the 

Bayesian optimization and the original 1/36th Octave 

band function, we see that the error is minimal on 

function where the overall level is relatively high. For 

functions where the response is low,  as seen in curve 5, 

we observe the large difference as the acquisition 

function privileges higher responses (38.9%). Should 

the uncertainty on those lower responses be of 

importance to the studied structure, one may choose to 

modify the acquisition function or consider this 

response location individually. 

Here, we see that the algorithm converges quickly as all 

6 surrogate functions get populated when a new 

frequency point is solved. This results in a significant 

reduction in the required number of frequency points, 

thus solve time. 

CONCLUSIONS 

This research introduces a novel Bayesian optimization 

method using a Matern kernel, significantly enhancing 

computational efficiency while maintaining high 

accuracy in frequency response analysis. This approach 

is particularly beneficial in scenarios where 

computational resources are limited. By addressing the 

inefficiencies of traditional methods, the proposed 

technique significantly enhances computational 

efficiency while maintaining high accuracy in 

estimating overall response levels. This approach is 

particularly beneficial in scenarios where computational 

resources and time are limited, such as in structural 

vibration predictions and acoustic analysis. 

Key Contributions 

1. Efficiency and Accuracy: The proposed 

Bayesian optimization method reduces the 

number of frequency points required by 

approximately five times compared to 

traditional methods. This reduction is achieved 

through the efficient sampling strategy of 



 

 

Bayesian optimization, focusing on the most 

informative points. The method balances the 

need for computational efficiency with the 

accuracy of the probabilistic estimations, 

which is critical for practical engineering 

applications. 

2. Relevance of the Matern Kernel: The 

selection of the Matern kernel over the RBF 

kernel is validated through its ability to handle 

abrupt changes and discontinuities in the 

response curves. This makes the methodology 

well-suited for modeling real-world vibration 

and acoustic signals, which are often 

characterized by sharp peaks and non-smooth 

behavior. 

3. Scalability and Adaptability: The Bayesian 

optimization approach is scalable and 

adaptable to various types of response curves 

and models. This is demonstrated through the 

integration of the methodology with simulation 

software and coupled FE-BEM. The ability to 

apply the method across different models and 

scenarios showcases its versatility and potential 

for broader application in engineering analyses. 

4. Validation and Practical Application: The 

validation of the methodology through known 

frequency response curves and its application 

to a coupled FE-BEM model highlights its 

practical utility. The results show that the 

Bayesian optimization approach maintains high 

accuracy in capturing overall response levels 

while offering substantial improvements in 

computational efficiency. This practical 

validation confirms the method's reliability and 

effectiveness in real-world applications. 

Future Work 

The promising results of this research open several 

avenues for future work: 

1. Enhanced Kernel Selection: Future research 

could explore the potential of other kernels or 

hybrid kernel approaches to further enhance 

the accuracy and efficiency of the Bayesian 

optimization method. Tailoring the kernel to 

specific types of response curves could provide 

even better performance. 

2. Automated Parameter Tuning: Developing 

automated techniques for tuning the 

hyperparameters of the Gaussian process 

model, such as the length scale and ν 

parameters, could further improve the 

robustness and adaptability of the 

methodology. This would make the approach 

more user-friendly and applicable to a wider 

range of problems. 

3. Integration with Real-Time Systems: The 

last example presented in this paper 

demonstrates a potential integration with a 

software package. Integrating the Bayesian 

optimization approach with real-time 

monitoring and control systems could provide 

significant benefits in applications requiring 

real-time decision-making and adjustments. 

This would lower the  

4. Extended Applications: Exploring the 

application of the methodology to other 

domains, such as electromagnetic analysis or 

thermal response modeling, could demonstrate 

its versatility and effectiveness beyond 

vibration and acoustic analyses. Extending the 

approach to these areas could provide new 

insights and advancements in engineering 

simulations. 

In conclusion, this research advances the state-of-the-art 

in Bayesian optimization for frequency response 

models, offering a robust and efficient solution for 

probabilistic estimations. The methodology's ability to 

balance accuracy with computational efficiency makes 

it a valuable tool for engineering analyses, paving the 

way for more reliable and high-fidelity models that can 

better predict and respond to real-world conditions. 
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