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ABSTRACT

Traditionally, frequency response models are solved
using either a constant bandwidth or an n-th octave
band. For both vibration and acoustic analyses, it is
commonly known that one is expected to solve a model
with a sufficiently narrow band to ensure the overall
response of the mechanical system is accurately
captured. However, when specifically capturing the
overall level, one needs to ensure the highest values of
the response curve are correctly captured while a
controlled amount of uncertainty can be accepted when
estimating the lowest response point of the curve.

We propose a Bayesian optimization technique designed
to capture the overall level using a Matern kernel. The
proposed method enables estimations of the overall
levels of a response curve using approximately five
times fewer frequency points while providing a given
uncertainty on the overall level.

This paper describes the architecture of the proposed
process, and demonstrates validation using individual
response curves followed by an integrated process with
simulation software.

INTRODUCTION

Accurate frequency response models are crucial in
vibration and acoustic analyses. These models require
the precise capture of system responses over specific
frequency bands to ensure reliable predictions.
Traditional methods often involve extensive
computations, which can be resource-intensive and
time-consuming. Such approaches typically involve
solving models using either constant bandwidths or n-th
octave bands with frequency steps that are fine enough
to ensure an accurate representation of the overall
response of mechanical systems.

However, when focusing only on the overall level, the
basic frequency domain definitions can be revised. One
can choose to accurately capture the highest response
values while tolerating some uncertainty in estimating
the lowest response points. This generally leads to a
reasonably accurate capture of the overall level.

Bayesian optimization presents a promising technique to
address these challenges. Specifically, by utilizing an

appropriate kernel and tuned decision algorithm within
a Bayesian framework, it is feasible to estimate overall
response levels effectively with significantly fewer
frequency points, balancing computational efficiency
with the accuracy provided by probabilistic estimations.
Bayesian methods, known for their robust statistical
inference and parameter estimation capabilities, have
been extensively applied in various engineering
problems, including model updating and uncertainty
quantification [1]. The utilization of Bayesian
optimization, particularly with Gaussian process (GP)
surrogate models, has shown efficacy in achieving rapid
and precise optimization in high-dimensional spaces [2].

In the context of frequency response models, Bayesian
optimization facilitates the construction of a
probabilistic model of the objective function, enabling
efficient exploration and exploitation of the search
space to identify optimal frequency. This approach not
only reduces the computational burden but also
enhances the robustness of the estimations by
integrating prior knowledge and observed data into the
model [3].

By focusing on capturing the highest response values
accurately while accepting controlled uncertainty in the
lower response points, the method proposed in this
paper achieves a balance between accuracy and
computational efficiency. This is particularly
advantageous in practical applications where
computational resources and time are often constrained.

The proposed method involves constructing a surrogate
model using Gaussian processes, which is then
optimized using Bayesian techniques to identify the
most informative frequency points. This approach
reduces the required frequency points by approximately
five times compared to traditional methods, thereby
significantly enhancing the efficiency of the modelling
process [4].

To validate the proposed method, individual response
curves are analyzed, followed by integration with
simulation software and a coupled “finite element,
boundary element method (FE-BEM)” to assess its
performance in practical scenarios. The results indicate
that the proposed Bayesian optimization approach not
only maintains high accuracy in capturing overall



response levels but also offers substantial improvements
in computational efficiency.

METHODOLOGY

Bayesian optimization is selected due to its robustness
in handling complex, noisy functions with limited data
points. Initially, a standard Radial Basis Function (RBF)
kernel was considered for the Gaussian process model.
The RBF kernel, also known as the squared exponential
kernel, is defined by:
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While the RBF kernel is effective for very smooth
functions, it was found to be unsuitable for this
application due to its tendency to overly smooth the
response curves, which do not reflect the true nature of
vibration and acoustic signals characterized by abrupt
changes and peaks.

To address this, the Matern kernel was chosen [5]. The
Matern kernel, a popular choice in Gaussian process
modeling, is employed for its flexibility and ability to
model various degrees of smoothness in the response
curves. This kernel is particularly effective in scenarios
where the response function is not smooth but rather
characterized by abrupt changes or discontinuities.
Additionally, the Matern kernel allows for peaks in the
curve, which works well for capturing the sharp peaks
often observed in frequency response functions.

The Matern kernel covariance function is defined as:
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e v controls the smoothness of the function,

e T'(v) is the Gamma function,

e K, is the modified Bessel function of the
second kind.

Constructing the Surrogate Model

The first step in the proposed methodology involves
constructing a surrogate model using Gaussian
processes (GPs). Gaussian processes are non-parametric
models that provide a probabilistic approach to

modeling complex functions [6]. The surrogate model
approximates the true response function, capturing its
key characteristics while being computationally less
demanding.

The process begins by selecting a set of initial
frequency points, which are used to evaluate the
response function. These points are chosen based on
prior knowledge or through a preliminary experimental
design. In the examples described in this paper, we
found that the one third octave band provides that
satisfactory initial data set; however, this may need to
be adjusted for different models. The response values at
these points serve as the training data for the GP model.
The Matern kernel is then used to define the covariance
structure of the GP, enabling the model to capture the
dependencies between different frequency points.

Optimization Using Bayesian Techniques

Once the surrogate model is established, Bayesian
optimization is employed to identify the most
informative frequency points that need to be evaluated
to estimate the overall level accurately.

As a reminder, the overall level is defined as the integral
of the PSD vibration response of the structure excited
by a diffuse acoustic field [7] . For a given model it is
estimated by:
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This can be rewritten as:
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The main idea behind this optimization process is to
estimate this overall level by minimizing the number of
frequency points.

The Bayesian optimization process involves the
following steps:

1. Acquisition Function Selection: An
acquisition function is chosen to guide the
search for the next frequency point to evaluate.
The acquisition function balances exploration
(sampling points with high uncertainty) and
exploitation (sampling points with high
expected response). This part of the algorithm
requires the most adaptation to estimate the
overall level of the response while reducing the
uncertainty of the overall response in the



model. A combination of exploitation and
exploration is used, formulated as follows:

a(f) = o(f) - W) +a(f)

where:

e g(f)is the uncertainty (standard deviation) at
frequency f,
o u(f) isthe predicted mean level at frequency

The next frequency point to be solved is the frequency f
where a is maximum. As the frequency point is solved,
o(f) tends to zero, this a(f) tends to zero and the next
frequency solved is a combination of levels and
uncertainty. This was found to best identify the overall
level of the function while minimizing the number of
frequency points.

2. lterative Updating: The surrogate model is
iteratively updated with new frequency points.
At each iteration, the acquisition function is
maximized to select the next frequency point,
which is then evaluated using the true response
function. This new data point is then added to
the training set, and the GP model is updated
accordingly.

3. Convergence Criteria: The optimization
process continues until a convergence criterion
is met. This criterion can be based on a
predefined number of iterations, a threshold on
the acquisition function value, or a desired
level of uncertainty in the overall level
estimation. In our model, we calculate the
overall level for the vibration level at a given
target location and continue to convergence. In
the experiments presented below, we defined
convergence on a stable solution as an overall
level change by less than 1% when adding 10
new frequency points.

Reducing the Number of Frequency Points

A key advantage of the proposed methodology is its
ability to reduce the required number of frequency
points by approximately five times compared to
traditional methods. This is illustrated by Figure 3
where both the original function (orange) and the
approximated function (blue) are shown. We see here
that the function can easily be approximated with a
reduced number of points. This reduction is achieved
through the efficient sampling strategy of Bayesian
optimization, which focuses on the most informative
points rather than uniformly sampling the entire
frequency range. This approach not only decreases the
computational burden but also maintains the accuracy of

the overall level estimation. Given a reasonable number
of frequency points on the initial surrogate model, the
estimation of the overall level can be obtained through
an iterative gaussian optimization process.

Practical Applications and Advantages

The proposed methodology is particularly advantageous
for frequency response models where computational
resources and time are constrained. For example, in
vibration response predictions to structural or acoustic
loads, where frequent updates to the frequency response
are needed for the different design iterations, reducing
the number of frequency points can significantly speed
up the analysis without compromising accuracy.
Additionally, this method can be applied to acoustic
analyses of large mechanical systems such as launch
vehicles, allowing for quick and reliable estimations of
overall sound pressure levels while controlling
uncertainties, ultimately facilitating timely decision-
making.

The proposed method can be applied to coupled models,
include those that are strictly finite element based or
those that combine the finite element method with
others including boundary element methods and
statistical analysis.

By integrating Bayesian optimization with a Matern
kernel to create a smart acquisition function, this
methodology offers a robust and efficient solution for
estimating the overall levels of frequency response
models, balancing the need for accuracy with
computational efficiency.

VALIDATION AND APPLICATIONS
Individual frequency response curve

To validate the proposed method we utilize a known
frequency response curve with a defined overall level to
create a surrogate function. The optimization algorithm
is then run until the known overall level is reached.

The initial function is a vibration response is shown in
Figure 1 with an overall level of 61.5 g rms that uses
253 frequency points from 20 to 2000 Hz in the 1/36™
Octave Band. Given the response curve and the level of
damping on the structure, sampling the curve with
narrower frequency bands should not affect the overall
level. For convenience, all the results presented below
use a Power Spectral Density (PSD) in g"2/Hz.
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Figure 1: PSD vibration response curve

As presented in the previous section an initial surrogate
function is initially approximated using 21 frequency
points in the one third octave band. The above
frequency response is first approximated with the
following curve:
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Figure 2: PSD Vibration curve and initial surrogate function
in the one third octave band with 95% confidence interval

The confidence interval looks unusual due to the
logarithmic scale of the graph. At sample points,
uncertainty goes to zero. Model parameters appear to be
well tuned, as the reference curve is contained within a
95% confidence interval.

Note that this paper does not discuss the determination
of the length scale and v parameters. These were
determined using multiple vibration response curves and
aresetto ! = 0.671 and v = 0.75. Values were
determined using a publicly available optimization
algorithm in the Python library sklearn [8].

After parameter selection using the described
optimization process, the proposed acquisition function
is then used to determine additional frequencies at
which the response function should be sampled. Figure

3 shows the initial curve (orange), augmented by 31
additional frequency points where the convergence
criteria is met.
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Figure 3: PSD Vibration curve and optimized surrogate
function with 95% confidence interval

Figure 4 shows that the estimation error decreases as
additional frequency points are added to the surrogate
function.
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Figure 4: Error on overall level as frequency points are added
to the surrogate function

To test the algorithm stability, the Bayesian
optimization algorithm is run to include up to 100
frequency points, resulting in the response curve shown
in Figure 5 and corresponding error plot shown in
Figure 6.
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Figure 5: Second PSD Vibration curve and optimized
surrogate function with 95% confidence interval
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Figure 6: second Error on overall level as frequency points
are added to the surrogate function

Although the error on the overall level oscillates
between 0 and 1% over a number of iterations, the
algorithm is generally stable as all of the data recovery
locations we are tried lead to a converged value.
However, before extensive use in an industrial
simulation, additional robustness validation should be
performed. Nevertheless, for the purpose of this paper
can be used to estimate overall levels. This stability
confirms the proposed convergence criteria described
previously.

We next applied the model to additional response curves
(Fig 7, Fig. 9).
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Figure 7: Third PSD Vibration curve and optimized surrogate
function with 95% confidence interval
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Figure 8: Third error on overall level as frequency points are
added to the surrogate function

For the experiment shown in Fig. 7, It is worth noting
that the error graph is the lowest with the 30" frequency
point, despite the fact that the optimization has not
converged, which occurs after approximately 50
frequency points and the error on the overall level is
below 4%; this could be explained by a large peak at 50
Hz is not accounted for. However, the error can still be
considered to be minimal. Additional tests with stricter
convergence criteria showed that all peaks can be
captured by the proposed algorithm (Fig. 9). However, a
4% error on the estimation of the overall level can
generally be deemed acceptable on simulation models,
as other sources of error exist between simulation and
test.

Another standard response curve showing the
satisfactory performance of the proposed algorithm is
shown below.
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Figure 9: Fourth PSD Vibration curve and optimized
surrogate function with 95% confidence interval

The error graph is:
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Figure 10: Fourth error on overall level as frequency points
are added to the surrogate function

When considering the 95% confidence interval,
assuming that the error at a given frequency is
uncorrelated to the error at another frequency, we can

calculate a standard deviation for the overall level using

the following formula:

Ooveraul = ’Z o(f)?

For five consecutive curves, we are the comparing the
overall level, of the overall standard deviation and the
residual error:

Curve # Overall level Ogveranr | REsidual
[g rms] [grms] | error %

1 60.2 1.0 2.0

2 55.4 1.1 1.2

3 27.1 0.8 3.6

4 27.1 0.8 1.3

| 5 | 85 | 0.3 | 0.4

The values above show the consistency of the algorithm
across several curves. The maximum overall standard
deviation remains low and therefore the calculated
overall level is reliable, suggesting that this method can
be used in an engineering study.

For the 5 curves studied in this section, the maximum
number of frequency points to reach convergence is 56.
Considering the data source is comprised of 253
frequency points, this means that we can correctly
approximate the response curve with almost 1/5% of the
frequency points. On a frequency response calculation,
this should theoretically translate into a nearly 5x
speedup on the computation time.

Integration with a coupled FE-BEM model

A coupled Finite Element-Boundary Element Model
(FE-BEM) in VA One. The model applies a Diffuse
Acoustic Field modeled as a sum of individual plane
waves. This type of model is standard for most payload
analysis to evaluate the vibration and stresses.

« G/} | vaone

Figure 11: VA One FE-BEM Model render

For this model, we aim to predict the overall vibration
response at 6 locations from 20 to 500 Hz. The
structural part of the model functions as a modal
frequency response. Structural modes are calculated up
to 720 Hz. Both the BEM and the coupled model are
solved for each individual frequency requested by the
algorithm.



The algorithm was modified so that a single simulation
model is used to predict the responses at 6 individual
locations. For this, an individual surrogate function is
generated for each of the 6 recovery locations. Then, for
the optimization process, the highest value of the
acquisition function determines the next frequency to be
solved, though each new frequency point feeds all 6
surrogate functions. The model is considered to be
solved once all 6 surrogate functions meet the
convergence criterium previously defined.

After running the algorithm, convergence was reached
on all 6 sensors after 68 iterations.

Structural response results are presented in the figure
below:
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—— Location 4 - g_rms=3.1
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Figure 12: Vibration response at 6 locations on the VA One
FE-BEM Model

When compared to a traditional model solved in the
1/36'" Octave band the results compare as follows:

1/36%

B.ay(.e5|a_n Octave Difference
Curve optimization | band solve
(%)
overall level overall
level

1 24.1 24.3 0.8%
2 15.1 15.8 4.4%
3 7.4 7.4 0.0%
4 3.1 3.1 0.0%
5 2.5 1.8 -38.9%
6 48.0 48.2 0.4%

Convergence curves are presented in the figure below:
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Note that the model is considered to be solved when the
convergence criteria is met on all 6 curves. When
looking at the difference of overall level between the
Bayesian optimization and the original 1/36™ Octave
band function, we see that the error is minimal on
function where the overall level is relatively high. For
functions where the response is low, as seen in curve 5,
we observe the large difference as the acquisition
function privileges higher responses (38.9%). Should
the uncertainty on those lower responses be of
importance to the studied structure, one may choose to
modify the acquisition function or consider this
response location individually.

Here, we see that the algorithm converges quickly as all
6 surrogate functions get populated when a new
frequency point is solved. This results in a significant
reduction in the required number of frequency points,
thus solve time.

CONCLUSIONS

This research introduces a novel Bayesian optimization
method using a Matern kernel, significantly enhancing
computational efficiency while maintaining high
accuracy in frequency response analysis. This approach
is particularly beneficial in scenarios where
computational resources are limited. By addressing the
inefficiencies of traditional methods, the proposed
technique significantly enhances computational
efficiency while maintaining high accuracy in
estimating overall response levels. This approach is
particularly beneficial in scenarios where computational
resources and time are limited, such as in structural
vibration predictions and acoustic analysis.

Key Contributions

1. Efficiency and Accuracy: The proposed
Bayesian optimization method reduces the
number of frequency points required by
approximately five times compared to
traditional methods. This reduction is achieved
through the efficient sampling strategy of



Bayesian optimization, focusing on the most
informative points. The method balances the
need for computational efficiency with the
accuracy of the probabilistic estimations,
which is critical for practical engineering
applications.

2. Relevance of the Matern Kernel: The
selection of the Matern kernel over the RBF
kernel is validated through its ability to handle
abrupt changes and discontinuities in the
response curves. This makes the methodology
well-suited for modeling real-world vibration
and acoustic signals, which are often
characterized by sharp peaks and non-smooth
behavior.

3. Scalability and Adaptability: The Bayesian
optimization approach is scalable and
adaptable to various types of response curves
and models. This is demonstrated through the
integration of the methodology with simulation
software and coupled FE-BEM. The ability to
apply the method across different models and
scenarios showecases its versatility and potential
for broader application in engineering analyses.

4. Validation and Practical Application: The
validation of the methodology through known
frequency response curves and its application
to a coupled FE-BEM model highlights its
practical utility. The results show that the
Bayesian optimization approach maintains high
accuracy in capturing overall response levels
while offering substantial improvements in
computational efficiency. This practical
validation confirms the method's reliability and
effectiveness in real-world applications.

Future Work

The promising results of this research open several
avenues for future work:

1. Enhanced Kernel Selection: Future research
could explore the potential of other kernels or
hybrid kernel approaches to further enhance
the accuracy and efficiency of the Bayesian
optimization method. Tailoring the kernel to
specific types of response curves could provide
even better performance.

2. Automated Parameter Tuning: Developing
automated techniques for tuning the
hyperparameters of the Gaussian process
model, such as the length scale and v
parameters, could further improve the
robustness and adaptability of the
methodology. This would make the approach
more user-friendly and applicable to a wider
range of problems.

3. Integration with Real-Time Systems: The
last example presented in this paper
demonstrates a potential integration with a

software package. Integrating the Bayesian
optimization approach with real-time
monitoring and control systems could provide
significant benefits in applications requiring
real-time decision-making and adjustments.
This would lower the

4. Extended Applications: Exploring the
application of the methodology to other
domains, such as electromagnetic analysis or
thermal response modeling, could demonstrate
its versatility and effectiveness beyond
vibration and acoustic analyses. Extending the
approach to these areas could provide new
insights and advancements in engineering
simulations.

In conclusion, this research advances the state-of-the-art
in Bayesian optimization for frequency response
models, offering a robust and efficient solution for
probabilistic estimations. The methodology's ability to
balance accuracy with computational efficiency makes
it a valuable tool for engineering analyses, paving the
way for more reliable and high-fidelity models that can
better predict and respond to real-world conditions.
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