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Abstract

The vibration of a plate partially covered with a passive constrained layer damping (PCLD) patch is studied
from an energetic point of view. The damped plate is excited by an acoustic plane wave. The study is done
with a numerical two-dimensional multilayer plate model. Results of the present model are compared to those
obtained with three-dimensional nite element models. It is shown that the present model gives accurate
results, even for the layer’s inner behavior. It is less expansive in terms of computational cost; hence, it can
simulate eciently the structure for higher frequencies. Mathematical formulas for complex mechanical power
are presented, and the link with strain and kinetic energies and dissipated power is detailed. Both local and
global complex power balance are established, and corresponding expressions for the discretized problem are
formulated. Conservative and dissipative powers are studied for the PCLD damped plate. After a global balance
analysis versus frequency, a local study has been carried out in order to quantify the relative contribution of the
components of strain and stress tensors to the total strain energy and dissipated power; the individual layer’s
contributions is also investigated. The in-plane distributions of powers are mapped, showing the location where
dissipative phenomenon occurs and where strain energy is stored. Finally, three criteria based on the previous
power quantities are proposed in order to quantify the mechanical damping eciency of the patch.
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1. Introduction

Passive constrained layer damping (PCLD) patches have been widely used since they were rst introduced
in 1939 by a British patent [1] for damping vibration in the automotive industry. Nowadays they remain an
easy, cheap, and ecient way to reduce vibration and noise in a structure. For years, it has been used almost
exclusively in the aeronautic industry; however, Rao [2] recently presented many new elds of applications of
these treatments. Since the 1950’s, many papers have presented studies of vibration damping of plates and
beams by means of constrained layer damping devices. Most of these papers deal with plates fully covered with
a PCLD treatment, which can be considered as sandwich plates. However, in the case of partial treatment of
the plate, denite optimization of the patches layout is not established yet. Amongst the existing optimization
algorithms, Zheng [3] presents a comparative study of four of them: a sub-problem approximation method, a
rst order optimization method, a sequential quadratic programming algorithm, and a genetic algorithm. The
disadvantage of those iterative optimization algorithms is their high computation cost; therefore, most of them
are limited to two-dimensional beam treatments. Other algorithms, such as gradient based methods developed
by Lee [4] or Alvelid [5] and cellular automata developed by Chia [6, 7], were applied; yet, no algorithm led to
a denite general design rule regarding the layout of the damping patches.

Numerical simulation of structural vibrations is classically carried out by means of displacement ap-
proaches. The Finite Element Method (FEM) has been extensively used for these studies. Indeed, this method
is particularly ecient to study the vibrational behavior of rods, beams, plates, shells, solids and any assembly of
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such elements, giving the possibility to study complex structures like automotive, aircraft, train or ship bodies,
engines, buildings, wind turbines, etc. Nevertheless, the mesh of the structure must be suciently rened to let
the shape functions of elements match the displacement eld. When the wavelength is small compared to the
dimensions of the studied structures, the use of a lot of elements and degrees of freedom is necessary. Then the
computation cost can be very high, sometimes so much that the study is not feasible any more.

As an alternative to displacement-based approaches, methods based on energy or power were proposed.
Statistical energy analysis (SEA)[8] is a method suitable to predict space- and frequency-averaged behavior of
structures when the modal density is high, which generally corresponds to small wavelength/dimensions ratios.
The SEA method is dierent from the FEM for at least two reasons: the SEA method solves a –relatively
small– set of scalar energy balance equations, and is based upon statistical assumptions concerning distribution
of energy versus modes and/or substructures; the FEM solves a –relatively big– system of linear equations
corresponding to the discretization of partial dierential equations (PDE) in a continuous media (the structure’s
domain) and is of deterministic nature. Another class of methods, the power ow analysis (PFA) [9], in which
unknowns are powers, solves a heat conduction type PDE in the structure’s domain. Hence, this approach can
be formulated with the help of classical PDE solving tools, like the FEM. The PFA method has been applied
to rods, beams [10, 11], and to one-layer plates [12]. However, the required power diusion equations seem to
be dicult to formulate for heterogeneous structures. Nevertheless, these methods emphasize the relevance of
the power ow concept for the study of damped structures.

Energies, powers, and energy ow can also be computed from a classical displacement study and can
improve the comprehension of the damping of complex structures as shown by Pavic [13, 14]. The aim of this
paper is to present PCLD treatments from an energetic point of view, which could be a help for the design of
the optimal layout of the patches. In this study, a PCLD damped plate is studied with the help of a model [15]
based upon a zig-zag type plate theory [16] and the Rayleigh-Ritz method. Formulas that link the complex
mechanical power to the time-averaged strain energy and to the time-averaged dissipated power are presented.
The setting of a local and a global power balance is detailed. Formulas for computing all these quantities
from matrices and vectors of the discretized problem are presented. These formulas are used to investigate the
mechanism of damping. Agreement of the results, given by the studied model, is shown by comparison with
two other FEM simulations: a classical three-dimensional study carried out with the Cast3m FEM software
and a study realized with the shell elements of the code ACTRAN. Dissipative and conservative parts of the
mechanical power are examined in several ways: global balance, global bending/shear repartition in each layer,
and two dimensional spatial repartition. Based upon the global power balance, generalized damping factors are
proposed.

2. Present plate model

2.1. Considerations on plate models
A plate damped with PCLD patches is formally a multilayered plate with spatial inhomogeneities. Both

static and dynamic behaviors of such structures have been studied in early works [17, 18], and, because of their
complexity, they have been and still are extensively studied, causing the developments of many models [19, 20].
The goal of all these models is to reduce the plate to a two-dimensional structure by eliminating the thickness
dimension; this implies the consideration of bending (and possibly shear) generalized displacements and forces.
The classical laminate theory (CLT) is ecient for thin plates, and the (rst-order) shear deformation theory
(SDT) is appropriate for plates of moderate thickness. For the SDT, shear correction factors have been proposed
by various authors [21–24] in order to take into account the transverse shear stresses variations, which strongly
depends on the adjacent layer modulus and the laminate stacking sequence. These works gave dierent results,
which points out the diculty of the task, especially when dealing with the dynamic behavior. Higher order
shear deformation theories [25–27] and also alternative approaches like the so called zig-zag theories [19, 28]
have been formulated. All these models are perfectly compatible with the nite element method (FEM) or
with Rayleigh-Ritz approaches. Commercial nite element (FE) codes classically propose CLT and SDT based
elements. However, plates with PCLD patches exhibit a very high elastic modulus ratio between the elastic
layers and the viscoelastic one, which is not compatible with these classical plate models. For this study, the
SDT (with or without shear correction factors) has been tested and compared to other approaches including
the present model, and a poor agreement was found (results are not presented in this paper). On the contrary,

2



the present model is based upon a zig-zag type model [16], and it is shown in this document that it is very
accurate for the PCLD problem.

2.2. Specificities of the present model
The present model, as described by Loredo [15], allows one to simulate the behavior of a rectangular

multilayered plate with one or several multilayered patches. It is based on an out-of-plane assumed displacement
eld obtained by means of kinematic and static considerations. This approach was used in the early work of
Sun & Whitney [16] for multilayered plates and has been used later for vibroacoustical purposes by Guyader
and Lesueur [29].

It is a two-dimensional plate model with the ve classical displacement unknowns, but it diers from
classical laminate theories CLT and SDT because the assumed displacement variation, with respect to z, is
piecewise linear. This is the result of writing continuities of both displacements and shear stresses at each
interface, as shown below. For practical reasons, the displacement eld of each layer ` ∈ [2n] is linked to the
displacement eld of the rst layer. Thicknesses and elevations for an n layer material are presented in gure 1.
The displacement eld in each layer is written as follows,

{
u`
α(x, y, z) = u`

α(x, y, z
`) + (z` − z)(u1

3,α(x, y)− γ`
α3(x, y))

u`
3(x, y, z) = u1

3(x, y)
(1)

where greek indices stand for in-plane quantities and take values 1 or 2, superscript ` stands for the `-th layer
and superscript 1 stands for the rst layer for which all will be related, γ`

α3(x, y) are the transverse (engineering)
shear strains, and z` is the elevation of the layer `.

With these assumptions, the transverse displacement u3 and the transverse shear strains γ`
α3 are constant

within each layer with respect to the z-coordinate. Therefore, transverse shear stresses will also be constant in
each layer. According to these remarks, the conditions that are enforced reduce to:

• the continuity of displacements

u`
α(x, y, z

` + h`2) = u`+1
α (x, y, z`+1 − h`+12) (2)

• the continuity of transverse shear stresses

σ`
α3 = σ`+1

α3 (3)

Equations (2) and (3) allow linking the displacements eld in the (`+1)-th layer with the one of the `-th
layer, and, recursively, it can be linked to the displacement eld of the rst layer, following a process detailed
in reference [29].

As the rst layer is common to the uncovered and covered parts of the plate, all the displacements in the
multilayered structure are known in terms of the rst layer’s displacement eld, including only the ve classical
plate unknowns: three displacements u1

i and two rotations ϕ1
α = u1

3,α − γ1
α3.

The construction of the discrete motion equation system is achieved by the Rayleigh-Ritz method. Various
boundary conditions and external solicitations can be considered, as it is presented in detail in reference [15].

3. Model aptitude – Comparisons with FE models

3.1. Studied damped plate
Throughout this study, the same test case is used. A rectangular aluminum plate, with dimensions

a = 06 m, b = 05 m, and thickness h = 1 mm, is excited with a plane wave traveling towards the plate with
incidence angles θ = 45◦, ϕ = 45◦, and amplitude 1 Pa (see gure 2 for corresponding denitions). The plate is
clamped on its four sides. Aluminum material has the following properties: Young’s modulus E = 724×1010 Pa,
density ρs = 2780 kg m−3, Poisson’s ratio ν = 033, and loss factor ηs = 0005. A centered two layer PCLD
patch with dimensions ap = 03795 m, bp = 03162 m covers 40% of the total area of the plate. The rst layer
made of a viscoelastic material ISD 112 is 02 mm thick with a density of 1015 kg m−3 and Poisson’s ratio of
045. Table 1 presents the frequency dependence of the viscoelastic material properties for a given temperature.
For computational purposes, an interpolation has been used, and the corresponding formulas are given in the
appendix. The constraining layer is 02 mm thick and is made of the same aluminum as the plate.
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Figure 1: Geometrical parameters of the multilayer structure (represented on the left side in an undeformed state) and displacements
(represented on the right side after deformation).
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Figure 2: View of a patched plate submitted to an acoustic plane-wave, showing the denition of the angles of incidence θ and ϕ.
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Table 1: Frequency dependence of the mechanical properties of the viscoelastic material ISD 112 (T = 25◦C).
Frequency (Hz) Young’s Modulus (Pa) Loss factor

10 7.28× 105 0.90
100 2.34× 106 1.00
500 5.20× 106 1.00
1000 7.28× 106 0.90
2000 9.88× 106 0.80
3000 1.17× 107 0.75
4000 1.38× 107 0.70

3.2. Comparison with three-dimensional FE models
To verify the accuracy of the present model, a comparison is made with two nite element simulations.

The two associated nite element models are of three-dimensional type: the plate, the viscoelastic and the
constraining layers are each discretized with one element in the thickness. These two models use the same 20-
node hexahedron support element, but the chosen element in the ACTRAN code implements a shell formulation;
whereas, the chosen element in the Cast3m code only uses the three-dimensional elasticity equations and then
does not involve any kinematic hypothesis.

Figure 3 shows the evolution of the mean square velocity
〈
V 2

〉
versus the number of degrees of freedom

(DOF) for the two frequencies of 400 and 3000 Hz. For the 400 Hz case of gure 3(a), it is shown that conver-
gence is achieved with more than ten times less DOF for the shell formulation than for the three-dimensional
formulation and that the two-dimensional present model is able to give the same result with two times less
DOF than the the shell formulation. For the 3000 Hz case of gure 3(b), the same tendency is observed, but
convergence with the three-dimensional formulation could not be achieved on our computer since the required
number of DOF exceeds its memory capacities1.

Figure 4 presents the evolution of the mean square velocity
〈
V 2

〉
versus frequency for the three models.

The calculations for the three-dimentional model have been stopped at 800 Hz, since above this frequency,
the required number of DOF to ensure convergence makes computation time longer than one hour for every
frequency point on our computer.

3.3. Higher frequency comparison with a two-dimensional FE beam model
In order to work at higher frequencies, the size of the system must be increased, which cannot be done

easily for the two three-dimensional approaches as seen before. On the contrary, the two-dimensional present
model can work at higher frequencies.

To allow a verication of the model at higher frequencies, a beam model using the same displacement eld
has been realized by setting the maximum order of the base in the modiedwidth direction to zero (allowing
only a constant displacement). Then, a comparison of this model is made with a two-dimensional nite element
beam model, implemented with Cast3m (plane strain condition is applied).

For both models, the same test case is simulated: a beam with length a = 06 m and thickness h = 1 mm
is excited with an acoustic plane wave of incidence angle θ = 45◦ and amplitude 1 Pa. The beam is covered
with a centered two-layer PCLD patch with dimension ap = 03795 m and same structure and characteristics
as in the preceding plate studies.

For the present model, the maximum order of the base is set to 100 in the length direction; this value
is obtained after a convergence study at 10 kHz. The two-dimensional nite element mesh chosen after a
convergence study is made of 3000 × 10 elements for the base plate and 1898 × 2 elements for the patch (there
is one element per layer on the thickness direction).

Simulation is carried out over the 10 − 10000 Hz frequency range. Figure 5 presents the evolution of
the mean square velocity

〈
V 2

〉
versus frequency for the two models. It shows that the present model agrees

with the nite element one up to 5 kHz, and results in the 5 − 10 kHz range are quite similar. Note that this
two-dimensional nite element model takes into account deformation along the thickness direction (εzz can be
dierent from zero).

1Simulations performed on an Intel(R) Xeon(R) W3550 with 8 gigabyte of RAM
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Figure 3: Convergence study for the three models: evolution of the mean square velocity
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at 400 Hz (a) and 3000 Hz (b)

versus the number of degrees of freedom.
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3.4. Discussion
In this section, it is shown that nite element computations using a three-dimensional elasticity formu-

lation is not suitable to study PCLD patch problems because it needs a very rened mesh and then generates
huge systems of equations. Three-dimensional nite elements with shell formulation gives better results. These
two approaches were implemented in order to get a reference solution, and it is shown that they agree very well
as long as the convergence can be achieved.

Two-dimensional nite elements using classical multilayer rst order shear deformation theory have
been tested, with and without shear correction coecients, but a poor agreement was found with the three-
dimensional models (this study is not presented here). On the other hand, the present model, which is also a
multilayer plate model, gives good results compared to the three-dimensional plate model, while keeping the
good performance of a two-dimensional model. Furthermore, it is shown by comparison with a two-dimensional
nite element beam model that it can manage studies with higher wavenumbers. This shows that the assumed
displacement/stress eld of the present model is very accurate for the PCLD problem.

4. Complex mechanical power

4.1. Link between classical energies and complex power
It is assumed in this study that the displacements are small. Considered materials are viscoelastic with

viscous damping. The damping factor η can depend on the frequency, but, in this section, this dependence is
not considered because computations are done for a given frequency. Materials are supposed to obey to the
anisotropic generalization of the Kelvin-Voigt model,

σij = σel
ij + σvi

ij = Cijklεkl + ηijklε̇kl

with Cijkl = Cijlk = Cklij and ηijkl = ηijlk = ηklij (4)

where ε̇kl denotes the time derivative of εkl, the second order Cauchy’s stress tensor σ is the sum of two
symmetric second order tensors σel and σvi, which stand respectively for the elastic and viscous contributions
for stresses.

When dealing with damped structures, it can be useful to access to spatial repartitions of the kinetic
energy ek(t), the strain energy es(t), and the dissipated power densities pd(t). Let us dene these time dependent
quantities:

ek(t) =
1

2
ρvi(t)vi(t) es(t) =

1

2
σel
ij(t)εij(t) =

1

2
Cijklεkl(t)εij(t) pd(t) = σvi

ij (t)ε̇ij(t) = ηijklε̇kl(t)ε̇ij(t) (5)

As periodically loaded damped structures are commonly treated using complex quantities, it is interesting
to deal with complex powers, which, as will be seen below, give natural access to time-averages of the above
quantities. In addition, it is possible to write both local and global power balances involving the complex
incoming power P̃inc, and time-averages of the dissipated power, the kinetic energy, and the strain energy.
Sections 4.2 and 4.3 are devoted to this point.

In complex form, the material behavior law (4) becomes:

σ̃ij = Cijklε̃kl + jωηijklε̃kl (6)

Time-averaged quadratic quantities of formulas (5) can be built taking half of the real part of the corre-
sponding hermitian products:

〈ek(t)〉 =
1

4
ρṽ∗i ṽi 〈es(t)〉 =

1

4
Re(σ̃el∗

ij ε̃ij) 〈pd(t)〉 =
1

2
Re(jωσ̃vi∗

ij ε̃ij) (7)

The Re symbol has been omitted for the kinetic energy because this quadratic term is obviously real. The
major symmetry of the fourth order tensors in the above behavior law implies that σ̃el∗

ij ε̃ij is real and σ̃vi∗ε̃ij is
imaginary. Then, the remaining Re symbols in equation (7) can also be omitted. Indeed:

〈ek(t)〉 =
1

4
ρṽ∗i ṽi 〈es(t)〉 =

1

4
σ̃el∗
ij ε̃ij 〈pd(t)〉 =

1

2
jωσ̃vi∗

ij ε̃ij (8)

It is also interesting to remark at this time that:
1

2
σ̃∗
ij ε̃ij =

1

2
(σ̃el∗

ij ε̃ij + σ̃vi∗
ij ε̃ij) = 2 〈es(t)〉 − j

1

ω
〈pd(t)〉 (9)
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4.2. Local complex power balance
Let us start with the equilibrium equations of continuum mechanics:

σji,j + ρfv
i = ρv̇i (10)

For the corresponding harmonic problem, the use of complex quantities leads to:

σ̃ji,j + ρf̃v
i = jωρṽi (11)

The complex power balance is obtained by computing half of the hermitian product of equation (11) by {ṽi},
which gives:

1

2
ṽ∗i σ̃ji,j +

1

2
ρṽ∗i f̃

v
i = j

1

2
ωρṽ∗i ṽi (12)

Integration by parts of the rst term leads to:

− 1

2
ṽ∗i,j σ̃ji +

1

2
(ṽ∗i σ̃ji),j +

1

2
ρṽ∗i f̃

v
i = j

1

2
ωρṽ∗i ṽi (13)

According to the symmetry of the stress tensor, one can write:

− 1

2
D̃∗

ij σ̃ji + (
1

2
ṽ∗i σ̃ji),j +

1

2
ρṽ∗i f̃

v
i = jω

1

2
ρṽ∗i ṽi (14)

where Dij is the stretch rate tensor. For small strains, Dij = ̇ij , which implies D̃ij = jω̃ij for harmonic

excitation. Introducing Ĩj =
1

2
ṽ∗i σ̃ji as the complex power ow vector2, it follows:

Ĩj,j +
1

2
ρṽ∗i f̃

v
i = jω

1

2
ρṽ∗i ṽi + j

1

2
ω̃∗ij σ̃ji (15)

Replacing the terms of the right side with the help of formulas (8) and (9) gives the local complex power balance:

Ĩj,j +
1

2
ρṽ∗i f̃

v
i = 〈pd(t)〉+ 2 jω(〈ek(t)〉 − 〈es(t)〉) (16)

This equation can be split into its real and imaginary parts, leading to a system describing separately conser-
vative and dissipative quantities. This splitting of the local power balance is not presented here, as a similar
splitting concerning the global power balance will be presented in section 5.1, formula (26).

4.3. Global complex power balance
Integrating equation (16) over a domain V of boundary S using Ostrogradsky’s theorem and the boundary

conditions for the stress tensor, leads to the global complex plower balance,

P̃inc = P̃fs + P̃fv = 〈Pd(t)〉+ 2 jω(〈Ek(t)〉 − 〈Es(t)〉) (17)

where P̃inc is the complex incoming power, which is the sum of the complex powers of surface and body forces
whose expressions are

P̃fs =

∮

S

1

2
ṽ∗i f̃

s
i dS (18)

P̃fv =

∫

V

1

2
ṽ∗i f̃

v
i dV (19)

and 〈Pd(t)〉, 〈Ek(t)〉, and 〈Es(t)〉 are integrals over V of 〈pd(t)〉, 〈ek(t)〉 and 〈es(t)〉 respectively.

2also called intensity vector
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4.4. Corresponding discrete expressions
Discretization of equation (17) with a displacement formulation (e.g., using the Finite Element Method

or the Rayleigh-Ritz method) gives a linear system of equations written with a mass matrix M, a complex
stiness matrix K̃, a generalized force vector f̃ , and unknowns, which are generalized displacements ũ:

(K̃− ω2M)ũ = f̃ (20)

Usually, the f̃ vector is the sum of the contributions of body f̃v and surface f̃s forces. The quantities of
formulas (17) can then be expressed in terms of the discrete system quantities:

P̃fs =

∮

S

1

2
ṽ∗i f̃

s
i dS = −1

2
jωũ∗T f̃s (21)

P̃fv =

∫

V

1

2
ṽ∗i f̃

v
i dV = −1

2
jωũ∗T f̃v (22)

〈Ek(t)〉 =
∫

V

1

4
ρṽ∗i ṽidV =

1

4
ω2ũ∗TMũ (23)

〈Es(t)〉 =
∫

V

1

4
Re(σ̃∗

ij ε̃ij)dV =
1

4
ũ∗TRe(K̃)ũ (24)

〈Pd(t)〉 =
∫

V

1

4
Re(jωσ̃∗

ij ε̃ij)dV =
1

2
ωũ∗TIm(K̃)ũ (25)

5. Power analysis

5.1. Global power balance
To avoid excessive computation time, the renements of the meshes have been set to 59×49×1+37×31×2

for the Cast3m model (91104 DOF) and to 40 × 33 × 1 + 25 × 21 × 2 for the ACTRAN model (42264 DOF).
Calculations for the three-dimentional model have been stopped at 800 Hz for the same reason as explained in
section 3.2. The powers 〈Pd(t)〉, 2ω 〈Ek(t)〉, and 2ω 〈Es(t)〉 given by the three codes are plotted versus frequency
in gure 6. This shows a satisfying agreement between the three simulations, despite the fact that they are
based on dierent methods.

In order to verify the global power balance of equation (17), global energies and powers are computed
with the corresponding vectors and matrices by means of the formulas of section 4.4. Then, we separate the
real and the imaginary parts of the power balance, which gives the system:

{
Re(P̃fs + P̃fv ) = 〈Pd(t)〉
Im(P̃fs + P̃fv ) = 2ω(〈Ek(t)〉 − 〈Es(t)〉)

(26)

These formulas have been tested for the present model over the frequency range 5 − 1200 Hz. The relative error ̃
of the power balance has maximum real and imaginary values of Re() = 1102×10−8 and Im() = 1206×10−13

over the tested frequency range. This validates the formulas of section 4.4 and shows that the global complex
power balance is accurately veried.

5.2. Contribution of tensor components to powers
It is possible to distinguish in each layer the contribution of dierent deformation modes. According to the

restriction to orthotropic materials with symmetry axes coinciding with the reference frame, the contributions
of the in-plane deformation (components 11, 22, and 12 of stress and strain tensors), of the xz transverse shear
deformation (components 13), and of the yz transverse shear deformation (components 23) to the strain energy
can be computed separately.

In table 2, these contributions are given for the considered structure and excitation at a frequency of 80 Hz
for the dissipated power, 〈Pd(t)〉, and the equivalent strain power 3, 2ω 〈Es(t)〉. For the considered structure,
80 Hz corresponds to a non modal frequency between the rst two eigenfrequencies. A comparison with the
three-dimensional nite element model shows satisfying agreement.

3the power developed by internal elastic forces on a cycle is null
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Figure 6: Powers 〈Pd(t)〉, 2ω 〈Ek(t)〉, and 2ω 〈Es(t)〉 for three dierent models: the present model, the ACTRAN 3D shell FE
model, and the Cast3m 3D FE model.

Table 2: Repartition over the dierent direction of space obtained with the Rayleigh Ritz method at 80 Hz.

Present model Cast3m 3D Present model Cast3m 3D

Components 〈Pd(t)〉 (W) Part 〈Pd(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part

11 22 12 (33) 3118× 10−7 54% 3107× 10−7 57% 6230× 10−5 920% 6203× 10−5 922%
13 3209× 10−6 560% 2999× 10−6 547% 3202× 10−6 47% 3024× 10−6 45%
23 2206× 10−6 385% 2178× 10−6 397% 2200× 10−6 32% 2190× 10−6 33%

Total 5726× 10−6 5488× 10−6 6770× 10−5 6724× 10−5

Layer 〈Pd(t)〉 (W) Part 〈Pd(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part 2ω 〈Es(t)〉 (W) Part

Base plate 2477× 10−7 43% 2585× 10−7 47% 4953× 10−5 732% 5171× 10−5 769%
Viscoelastic layer 5415× 10−6 946% 5177× 10−6 943% 5395× 10−6 8% 5158× 10−6 77%
Constraining layer 6385× 10−8 11% 5189× 10−8 10% 1275× 10−5 189% 1038× 10−5 154%

Total 5727× 10−6 5488× 10−6 6767× 10−5 6724× 10−5
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These results show clearly the importance of the transverse shear deformations of the viscoelastic layer for
the damping and the importance of in-plane deformation of both elastic layers for the strain energy. Of course
this is due to the relative position of each layer in the structure and to dierent Young’s moduli of materials.
The location of transverse shear deformation in the soft intermediate layer and of the in-plane deformation in
the upper and lower rigid layers is not a surprising fact as it is common for sandwich structures. Note the
strong contribution of the viscoelastic layer to damping: let us recall that Young’s modulus of the viscoelastic
material is (at this frequency) 35000 times lower than the Young modulus of aluminum. Despite a loss factor
of 0.005 for the aluminum and 1.0 for the viscoelastic material, the viscoelastic layer is responsible for 94.6% of
the dissipation of the whole structure, whereas it occupies only 6.9% of the volume, represents only 2.6% of the
mass and covers 40% of the surface.

Note that the contribution of the transverse shear (components 13 and 23 of tensors) are strongly governed
by the shape of the deformation, so they can vary with the frequency or the excitation, but the sum of them
remains approximatively constant when frequency varies. Note also that the minor contribution of the transverse
component (33) has been added to the in-plane contribution for the three-dimensional model.

This comparison with a three-dimensional nite element study shows that the present model, which can
be classied as a zig-zag equivalent single layer model (based upon the classication given in [28]), is able to
compute precise contributions of each layer and each deformation mode to conservative or dissipative power.

5.3. Power distribution over the surface
It is possible to derive the strains from the displacement eld described in [16] and then compute local

values of ε̃(x, y, z) and σ̃(x, y, z). Integration of equation (9) over the thickness and multiplication by (jω) leads
to:

1

2

∫ h

0

σ̃∗
ij(x, y, z) jωε̃ij(x, y, z)dz =

∫ h

0

〈pd(x, y, z, t)〉dz + 2 jω

∫ h

0

〈es(x, y, z, t)〉dz (27)

which permits denition of the associated surface densities of powers, p̃s(x, y), 〈p̃sd(x, y, t)〉, and 2ω 〈ẽss(x, y, t)〉:

p̃s(x, y) = 〈psd(x, y, t)〉+ 2 jω 〈ess(x, y, t)〉 (28)

For the system described in section 3, and the square velocity
〈
u̇2
3(t)

〉
= 12 ω2ũ∗

3ũ3, the two powers 〈psd(x, y, t)〉
and 2ω 〈ess(x, y, t)〉 are mapped for two frequencies, 80 Hz and 850 Hz, and are presented in gures 7 and 8.
The 850 Hz frequency has been added to explore the mid frequency range. It has been chosen since the patch
seems to have a low eciency according to criteria presented in section 6.

By comparing gures 7(a) and 7(c), we can notice a direct link between the mean square velocity and
the location of the strain energy; however, gure 7(b) shows that the location of dissipated power is dierent
from the location of conservative strain energy.

For a higher frequency, 850 Hz, we can conclude from gure 8 that the power associated with the
conservative strain energy 2ω 〈ess(t)〉 tends to be stored on the outside of the patched surface; conversely, the
dissipated power 〈psd(t)〉 seems to be lower than at 80 Hz. We can consider the patch not to be very ecient at
this frequency; therefore, it is interesting to compute ratios presented in section 6.

It can also be seen that an asymmetry is visible, especially for the second case with the 850 Hz excitation.
It is due to the direction of the incident acoustic plane-wave. Levels of energies are higher in the opposite
corner to the provenance of the plane-wave. This can be explained by the fact that the incident plane wave
creates a progressive plane wave in the plate, with a wavelength corresponding to the projection of the acoustic
wavelength. This plane wave progresses in the same direction as the projection of the incident plane wave and
brings energy to the opposite corner. This energy reects o the boundaries but the damping makes the amount
of reected energy lower, explaining the observed asymmetry. This phenomenon has been observed for various
incidence angles and various frequencies, and it is easier to see on animated plots. However, the presumed role
of damping has not been investigated at this time.

This tool, displaying the energy distribution over the plate, brings a new aspect to the problem of optimal
patch layout. This deterministic method allows a better understanding of how the pach damps the vibrations.

11



(a) (b)

0 01 02 03 04 05 06
0

01

02

03

04

05

x (m)

y
(m

)

2 4 6 8 10 12 14 16

×10−7

0 01 02 03 04 05 06
0

01

02

03

04

05

x (m)
y
(m

)

03 06 09 12 15 18 21

×10−4

(c)

0 01 02 03 04 05 06
0

01

02

03

04

05

x (m)

y
(m

)

03 06 09 12 15 18 21

×10−3

Figure 7: Maps for the designated test case at 80 Hz: (a): square velocity
〈
u̇2
3(t)

〉
(m2s−2); (b): dissipated power 〈psd(t)〉 (W m−2);

(c): conservative strain power 2ω 〈ess(t)〉 (W m−2).
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Figure 8: Maps for the designated test case at 850 Hz: (a): square velocity
〈
u̇2
3(t)

〉
(m2s−2); (b): dissipated power 〈psd(t)〉 (W m−2);

(c): conservative strain power 2ω 〈ess(t)〉 (W m−2).
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6. Efficiency indicators

As a rst introduction to the use of power and energy indicators in the damped system, this section
proposes a rst investigation into patch eciency indicators from an energetic point of view. A usual indicator
of sound transmission over a plate used in the literature is the transmission loss (TL), which is the ratio between
the acoustic incoming power and acoustic exiting power. However, this ratio does not directly indicate the patch
eciency from a strict mechanical point of view. Indeed, the TL gives a general overview of the vibration of the
plate, including the radiation eciency of the modes and other acoustic parameters. The following proposed
indicators η1, η2 and η3 are only based on the damping eciency of the patch:

η1 =
〈Pd(t)〉

2ω 〈Ek(t)〉

η2 =
〈Pd(t)〉

2ω 〈Es(t)〉
(29)

η3 =
〈Pd(t)〉

2ω(〈Ek(t)〉+ 〈Es(t)〉)

Indicator η1 is adapted to an optimization of the patch for acoustic eciency; either the kinetic energy
of the structure is considered directly related to the acoustic emission of the structure or it can be coupled
with the radiation eciency. Indicator η2 is adapted to a mechanical optimization of the patch. Minimizing
the strain energy tends to improve the mechanical behavior of the structure. Indicator η3 is a hybrid indicator
combining η1 and η2.

We can also notice that η2 is similar to the indicator η as presented by Johnson and Kienholz [30]. The
main dierence is that η2 takes into account the total dissipated energy while η takes only into account the
energy dissipated in the viscoelastic layer.
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η1 η2 η3

Figure 9: Ratios η1, η2, and η3 over the frequency range 5Hz–3000Hz

If we analyze the general trend of the three curves in gure 9, we can see that the three indicators tend
to decrease as frequency gets higher. This can be explained with the following logic:

• In a low frequency range, the deformed structure looks like the uncovered plate, and only the amplitude
of the deformation is aected by the patch.

• However, in a higher frequency range, the mean square velocity over the patch surface is much lower than
the mean square velocity over the rest of the plate. The patch surface almost behaves as rigid, and the
rest of the plate is almost as patch free.

In conclusion, it is possible to choose one of the new optimization criteria depending on what is the
primary goal of the damping patches (i.e., limiting the kinetic energy and/or the strain energy). Trying to
maximize one of the proposed criteria over the frequency range with an optimization algorithm should minimize
the behavior described in the previous paragraph.
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7. Conclusion

Vibrations of a PCLD damped plate excited by an acoustic plane wave are studied by means of a two-
dimensional, multilayer plate model. This model takes into account the kinematic and transverse shear stresses
assumptions at layer interfaces. The Rayleigh-Ritz method is used to formulate the system of equations.

The present model is compared to three nite element models: a three-dimensional elasticity model
(Cast3m), a three-dimensional shell model (ACTRAN), and a two-dimensional plane strain beam model (Cast3m).
The present model has a signicantly lower computation cost due to its two-dimensional nature. However, it is
shown that it very accurately describes the behavior of the patch over the layers.

Mathematical formulas for complex mechanical power are presented, and the link with classical energies
is established. Starting from the mechanical equilibrium equations, a local complex power balance is written. Its
imaginary part corresponds to a conservative power balance, whereas its real part accounts for the dissipative
behavior. Integration over the volume leads to a global complex power balance. Corresponding expressions
involving the matrices and vectors of the discretized problem are also given.

Established formulas are used to study the conservative and dissipative energies. First, the global complex
powers are computed for the three plate models over their respective valid frequency range. Second, strain energy
and dissipated power are analyzed in terms of contribution of the components of the strain and stress tensors and
also in terms of layers’ contribution. This part of the study conrms the usual ideas concerning the behavior of
PCLD patches by giving quantitative results. Finally, the in-plane distributions of powers are mapped, showing
the location where dissipated phenomenon occurs and where strain energy is stored.

Three criteria based on the previous power quantities are proposed, they are plotted versus frequency for
the test case. These criteria compare the dissipative power with either the kinetic energy, the strain energy, or
the total energy, and can be suitable to estimate the eciency of the damping device. Each of the criteria can
be relevant depending on the type of study.

These analyses bring elements of a methodology allowing to better understand the behavior of damped
structures. Such studies based on an energy approach could be useful to investigate patch design in the future.

Appendix A. Formulas for the viscoelastic material properties

Formula for Young’s modulus in Pascal, f being the frequency in Hertz:

E(f) = 10(0.4884 log(f)+5.3848) (A.1)

Formula for the loss factor η , f being the frequency in Hertz:

η(f) = 10(0.0175 log(f)3+0.0571 log(f)2+0.0015 log(f)−0.0874) (A.2)
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