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Typical Spacecraft DFAT® Test - Maryland Sound International (courtesy of Orbital Sciences Corporation) – Public Domain

DFAT® Testing – What Is It?

• DFAT® = Direct Field Acoustic Testing®

• The specimen is positioned in the center of a

group of speaker stacks which can be set up in a

variety of environments

• Replaces or complements expensive reverberant

chamber acoustic testing of aerospace systems

of different sizes

• Main testing goals:

– Reach desired excitation level

– Generate an acoustic field as close to a diffuse

acoustic field as possible
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Modeling the DFAT ® Test (1)

• Why?

• Confirm desired field character (diffuse)

• Help design/confirm optimal placement and

correlation of speakers

• Boundary Element Method (BEM) is used to

model the test setup

• Industry-standard VA simulation tool for

modeling space application dynamic

environments and structural response

• Unbounded fluid with floor as reflecting plane

and speakers as BEM surfaces



4Alexis.castel@esi-group.com

ESI Group

Modeling the DFAT ® Test (2)

• Speakers are modeled with simple BEM surfaces:

• Measured speaker impedance is applied to
radiating (interior) side of speaker surface

• Excitation is modeled as a velocity constraint

• Sources are partially correlated (based on
number of independent controllers modeled)

• Microphones are placed near the structure

• Test article is the only flexible structure in model

• Optimal cross-correlation and amplitude of
speakers are derived from a target acoustic field
(such as a DAF) using transfer functions from the
BEM simulation. This emulates the physical test
where an active control system is used.
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Cross-Correlation spectra       Wavenumber-frequency spectra

Spatial
FFT

Investigating Diffusivity / Field Character
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DFAT Theory
Term definition

Cross Spectral Excitation matrix is 
n_speakers x n_speakers and is 
optimized to have a diffuse field at the control 
microphones

𝑆𝑝𝑝 = 𝐻𝑝𝑤 𝑆𝑤𝑤 𝐻𝑝𝑤
𝐻

𝑆𝑞𝑞 = 𝐻𝑞𝑤 𝑆𝑤𝑤 𝐻𝑞𝑤
𝐻

Cross Spectral 

Pressure response

Cross Spectral Modal 
structural response

• 𝑆𝑥𝑥 is a cross-spectral matrix (Excitation or Response)

• Diagonal represents the amplitude

• Off diagonal terms represent the cross correlation

• 𝐻𝑥𝑦 is a matrix of transfer functions
From coupled 

BEM/FE results
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Excitation term

𝑆𝑤𝑤 =

𝑆𝑖𝑖 ⋯ 𝑆𝑖𝑗
⋮ ⋱ ⋮
𝑆𝑗𝑖 ⋯ 𝑆𝑖𝑖

Amplitude
Cross-Correlation

• One term per speaker.

• Depending on how speakers are “wired-up” to the control system, might have
fewer than n_speakers independent variables.

• For instance, if entire speaker stack is correlated (driven by the same control
channel), only n_stacks independent variables
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DFAT process
3-step process

Initial solution:
𝑆𝑤𝑤 = 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 ) 𝑆𝑝𝑝 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 )𝐻

No differentiation 

between amplitude 

and cross correlation
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DFAT process
3-step process

Initial solution:
𝑆𝑤𝑤 = 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 ) 𝑆𝑝𝑝 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 )𝐻

Optimization

No differentiation 

between amplitude 

and cross correlation

Using optimization 

algorithm to prioritize 

amplitude vs cross-

correlation
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Optimization

• Uses a quasi-Newton optimization algorithm (BFGS) to find the 𝑆𝑤𝑤 that results in the 

best match to the target acoustic field (in this case, a DAF).

– The optimizer finds the vectors and values that define a modified Singular Value Decomposition of

𝑆𝑤𝑤 to ensure the result is physically valid.

– Varying the number of singular vectors allows one to trade accuracy for computational speed. An

automatic setting is also available that uses the rank of the initial guess to estimate the number.

• Optimizes both sound pressure levels and diffusivity. The weight between those two

goals can be selected.
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DFAT Simulation Approach

New optimization feature
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DFAT process
3-step process

Initial solution:
𝑆𝑤𝑤 = 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 ) 𝑆𝑝𝑝 𝑝𝑖𝑛𝑣( 𝐻𝑝𝑤 )𝐻

Optimization
Post 

processing

No differentiation 

between amplitude 

and cross correlation

Using optimization 

algorithm to prioritize 

amplitude vs cross-

correlation

• Levels

• Wavenumber

Frequency spectrum
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Validation example – data courtesy of Northrop Grumman Acknowledgements to Daisaku 
Inoyama and Tom Stoumbos
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Simulation model

• Speaker stacks are represented

• Control and monitor microphones are placed
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Control microphones vs target

• Simulation
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• Simulation at virtual microphones is very close to the target curve (red), test is further away

• Greater test variability relative to target is likely due to use of older test setup configuration
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Monitor microphones vs target

• Simulation
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• Both simulation and test have similar trends

• One microphone at center of the stack shows higher levels, this trend is reflected by the simulation

• Variability vs. target again likely due to the older test setup (regularly-spaced control microphone

positions)
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Spatial distribution of pressure may be simulated at all locations

This is a “picture” of the pressure 

distribution at a discrete frequency

Ability to identify hot and cold spots
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Wavenumber analysis gives indication of field correlation character

• XY Plane (Parallel to the ground): shows diffuse acoustic field
characteristics

• YZ Plane (Normal to the ground): less diffusivity in the high frequency
range

Kz
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Structural response
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Accelerometers are placed 

on solar array
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Structural response
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• First simulation

result is presented

• no “tuning” of

FE / BEM

model

• Good low frequency

prediction

• Spectrum trend is

captured

• Result accuracy

also dependent on

the finite element

model
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Structural response
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Structural response
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Structural response
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Studying variation of control mic positions

• 2 additional sets of control microphones

– Blue

– Green

• Locations permuted randomly

from baseline locations (red)
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Blue set of control microphones – Control microphones

• Simulation
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Blue set of control microphones – Monitor microphones

• Simulation
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Moving forward – next steps

• Comparison results against test data

– Control and monitor microphones levels are comparable

– Structural response is comparable and excellent for a first simulation with no model tuning

– Contour plots indicate local acoustic response at all locations and frequencies of interest

– Cross correlation information allows for evaluation of field characteristic (diffusivity)

• Further acoustic and structural correlation studies for this data set and others

• Understand and reduce differences between test data and DFAT models

• Implement algorithm to account for speaker output power – limits and optimization

Conclusions


